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Prologue

One morning when I was in 4th grade, I remember waking up at 5AM to
travel with my family to the far side of Puerto Rico. We were on a 3 hour
drive to Mayagüez to participate in the second round of a math test given at
the University of Puerto Rico (UPR), Mayagüez campus. I remember arriving
and seeing hundreds of students that were going to take this test. It was all
very exciting to see.

During that visit, my parents met Dr. Luis Cáceres and Dr. Arturo Port-
noy, professors at the university and in charge of the contest. My parents have
said that this simple meeting helped launch my math career because with only
a few words of encouragement they were able to learn some basic information
to gather resources so I could feed my interest for math.

The first interesting inequality questions I remember seeing were given to
me by Cornel Pasnicu. It was during the MathCounts State round competition
in 7th grade and he was challenging me with different problems. As I began to
work on them I noticed that many inequality problems can be stated simply
but are very difficult to answer. The first two example problems in this book
are those two that Cornel had given me. Having worked many hours over the
past 6 years preparing for various math olympiads, inequality questions are
the most fun for me.

In 11th grade, a friend asked me to write a short lecture on Inequalities
for a website he was creating. After finishing the lecture I posted a link to it
online where Dr. Arturo Portnoy read it and recommended I give the lecture
at the upcoming OMPR Saturday class, and so I did. This was a huge honor
for me but I was quite nervous, having to stand up in front of friends knowing
that high school students had never given these classes before. I asked my
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friend Gabriel Reilly to help me and judging from the feedback we received, it
was a great success. That lecture became the basis for this book which I hope
students preparing for math olympiads can use.

And finally, there have been many people in my life that have helped to
advance my love for math. I have already mentioned Dr. Cáceres, Dr. Portnoy
and Dr. Pasnicu, who have helped and inspired me more than I can put into
words. But Dr. Portnoy deserves a special mention here as he has helped with
the proofing of this book.

Another math professor that has inspired me is Dr. Francis Castro at the
UPR Ŕıo Piedras campus. When I was in 8th grade he invited me to take
university level pre-calculus at UPR during the summer. Dr. Castro has for
many years gone out of his way to present me with challenging math problems
and I will always be grateful for his interest in my career.

The best math coach ever award goes to professor Nelson Ciprián from
Colegio Esṕıritu Santo (CES). For many years CES and Mr. Ciprián have
produced the top high school math talent in all of Puerto Rico. He has been
my math coach for 6 years and I will always be thankful for his guidance.

Over the years brother Roberto Erb, aunts like Rosemary Erb, uncles,
grandparents and family friends like Dr. Yolanda Mayo, The Reilly’s and
many others have helped sponsor the math camps I have attended. Without
their help I wouldn’t have been able to get to math camps like Awesome Math.
And finally, I want to thank my family.

My mom for always being there to support me.

My dad for always inspiring me to do greater.
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Chapter 1

The Basics

1.1 A Trivial Inequality

Take any real number, say x for example, and square it. No matter what x
you choose, the result, x2, is always non-negative (i.e. x2 ≥ 0). This is known
as the Trivial Inequality and is the base for many inequality problems.

When attempting to use this inequality, try to rearrange the problem so that
there is a zero on the right hand side and then factor the expression on the
left hand side in a way that it’s made up of “squares”.

Example 1.1.1: Let a and b be real numbers. Prove that

a2 + b2 ≥ 2ab

Proof. Note that by subtracting 2ab on both sides we get

a2 − 2ab+ b2 ≥ 0

or
(a− b)2 ≥ 0

which is true due to the Trivial Inequality. Since both inequalities are equiv-
alent, we are done.
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A Brief Introduction to Inequalities 1.1

Example 1.1.2: Let a, b and c be real numbers. Prove that

a2 + b2 + c2 ≥ ab+ bc+ ac

Proof. We start by moving all of the terms to the left

a2 + b2 + c2 − ab− bc− ac ≥ 0.

By multiplying by 2 we can see that

2(a2 + b2 + c2 − ab− bc− ac) = (a− b)2 + (a− c)2 + (b− c)2 ≥ 0.

Thus our original inequality is true, since both inequalities are equivalent. Al-
ternatively, you could notice, from Example 1.1, that the following inequalities
are true

a2 + b2 ≥ 2ab

b2 + c2 ≥ 2bc

a2 + c2 ≥ 2ac

Hence their sum,
2(a2 + b2 + c2) ≥ 2(ab+ bc+ ac)

is also true, so all that is left is to do is divide by 2 and we’re done.

1.1.1 Useful Identities

When working with inequalities, it’s very important to keep these identities in
mind:

• a2 − b2 = (a+ b)(a− b)

• a3 ± b3 = (a± b)(a2 ∓ ab+ b2)

• a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− ac− bc)

• abc = (a+ b+ c)(ab+ bc+ ac)− (a+ b)(b+ c)(a+ c)

2
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1.1.2 Practice Problems

1. Let x be a non-zero real number. Prove that

I.
x2 + 1 ≥ 2x

II.
4x2 + 1 ≥ 4x

III.

x2 +
1

x2
≥ 2

2. Let a and b be real numbers. Prove that

I.
a2 + 4b2 ≥ 4ab

II.
a2 + b2 + 1 ≥ ab+ a+ b

III.
(a+ b)2 + 2a2 + (a− b)2 ≥ 2b2

IV.
a2 − ab+ b2 ≥ 0

V.
2(a2 + b2) ≥ (a+ b)2 ≥ 4ab

3. Let a and b be positive real numbers. Prove that

I.
(a+ b)(1 + ab) ≥ 4ab

II.
a+ b+ 1 ≥ 2

√
a+ b

III.
(a+ 1)(b+ 1)(1 + ab) ≥ 8ab

IV.
(a2 − b2)(a− b) ≥ 0
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A Brief Introduction to Inequalities 1.1

V.
(a3 − b3)(a− b)

3
≥ ab(a− b)2

4. (Grade 8 Romanian National Math Olympiad, 2008) (Part a) Prove that
for all positive reals u, v, x, y the following inequality takes place:

u

x
+
v

y
≥ 4(uy + vx)

(x+ y)2

4
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1.1.3 Solutions

1. Let x be a non-zero real number. Prove that

I.
x2 + 1 ≥ 2x

Proof. Subtract 2x on both sides and you are left with

x2 − 2x+ 1 ≥ 0

which is equivalent to
(x− 1)2 ≥ 0

a direct result of the Trivial Inequality.

II.
4x2 + 1 ≥ 4x

Proof. Subtract 4x on both sides and you’re left with

4x2 − 4x+ 1 ≥ 0

which factorizes into
(2x− 1)2 ≥ 0

and we’re done!

III.

x2 +
1

x2
≥ 2

Proof. Rewrite the inequality as

x2 − 2 +
1

x2
≥ 0

then, note that it is equivalent to(
x− 1

x

)2

≥ 0

which is true.
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2. Let a and b be real numbers. Prove that

I.
a2 + 4b2 ≥ 4ab

Proof. As before, we subtract the terms on the right hand side (4ab in
this case)

a2 − 4ab+ 4b2 ≥ 0

which is equivalent to
(a− 2b)2 ≥ 0

II.
a2 + b2 + 1 ≥ ab+ a+ b

Proof. Note that in one of the examples we proved that

a2 + b2 + c2 ≥ ab+ bc+ ac

is true for all real numbers a, b and c. In this case we have that c = 1,
hence this inequality is also true. In the same way, we conclude that

a2 + b2 + 1 ≥ ab+ a+ b⇐⇒ (a− b)2 + (a− 1)2 + (b− 1)2 ≥ 0

III.
(a+ b)2 + 2a2 + (a− b)2 ≥ 2b2

Proof. Rewrite the inequality as

(a+ b)2 + 2(a2 − b2) + (a− b)2 ≥ 0

Then note that if x = a+b and y = a−b then our inequality is equivalent
with

x2 + 2xy + y2 ≥ 0

or
(x+ y)2 ≥ 0

and so we are done!
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IV.

a2 − ab+ b2 ≥ 0

Proof. Multiply both sides by 2 and rewrite as

a2 + b2 + (a2 − 2ab+ b2) ≥ 0

which is equivalent to

a2 + b2 + (a− b)2 ≥ 0.

The last inequality is of course a sum of squares, so we are done.

V.

2(a2 + b2) ≥ (a+ b)2 ≥ 4ab

Proof. We’ll first prove the left hand side inequality

2(a2 + b2) ≥ (a+ b)2

2(a2 + b2)− (a+ b)2 ≥ 0

2(a2 + b2)− (a2 + 2ab+ b2) ≥ 0

a2 − 2ab+ b2 ≥ 0

(a− b)2 ≥ 0

and so we have proven the left hand side of the inequality. For the right
hand side we have

(a+ b)2 ≥ 4ab

(a+ b)2 − 4ab ≥ 0

(a2 + 2ab+ b2)− 4ab ≥ 0

a2 − 2ab+ b2 ≥ 0

(a− b)2 ≥ 0

thus both sides are solved.
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3. Let a and b be positive real numbers. Prove that

I.
(a+ b)(1 + ab) ≥ 4ab

Proof. We’ll start by proving the following two simpler inequalities

a+ b ≥ 2
√
ab (1.1)

1 + ab ≥ 2
√
ab (1.2)

The first holds since it is equivalent with

(
√
a−
√
b)2 ≥ 0

while the second also holds since it is equivalent with

(1−
√
ab)2 ≥ 0

thus, they both hold true. This means that their product satisfies

(a+ b)(1 + ab) ≥ (2
√
ab)(2

√
ab) = 4ab

and we’re done.

II.
a+ b+ 1 ≥ 2

√
a+ b

Proof. Let x = a+ b so that the inequality is equivalent with

x+ 1 ≥ 2
√
x

which is equivalent to
(
√
x− 1)2 ≥ 0

so we’re done.

III.
(a+ 1)(b+ 1)(1 + ab) ≥ 8ab

8
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Proof. As in problem 3 part I, we note the following simpler inequalities

a+ 1 ≥ 2
√
a (1.3)

b+ 1 ≥ 2
√
b (1.4)

1 + ab ≥ 2
√
ab (1.5)

All three inequalities follow from the fact that for any non-negative real
number x we have

x+ 1 ≥ 2
√
x⇐⇒ (

√
x− 1)2 ≥ 0

Furthermore, we have that their product satisfies

(a+ 1)(b+ 1)(1 + ab) ≥ (2
√
a)(2
√
b)(2
√
ab) = 8ab

IV.
(a2 − b2)(a− b) ≥ 0

Proof. By difference of squares, we have that

(a2 − b2)(a− b) = (a+ b)(a− b)2

and we’re done since both a+ b and (a− b)2 are non-negative.

V.
(a3 − b3)(a− b)

3
≥ ab(a− b)2

Proof. As in the last problem, we note a special factorization. In this
case we use difference of cubes

(a3 − b3)(a− b)
3

=
(a2 + ab+ b2)(a− b)2

3

Then note that a2 + b2 ≥ 2ab so we can say that a2 + ab + b2 ≥ 3ab.
Thus we have

(a2 + ab+ b2)(a− b)2

3
≥ 3ab(a− b)2

3
= ab(a− b)2

which is what we wanted to prove, so we’re done!
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4. (Grade 8 Romanian National Math Olympiad, 2008) (Part a) Prove that
for all positive reals u, v, x, y the following inequality takes place:

u

x
+
v

y
≥ 4(uy + vx)

(x+ y)2

Proof. We begin by taking a common denominator on the left hand side

u

x
+
v

y
=
uy + vx

xy

so our inequality is equivalent with

uy + vx

xy
≥ 4(uy + vx)

(x+ y)2

or

uy + vx

xy
− 4(uy + vx)

(x+ y)2
≥ 0

(uy + vx)

(
1

xy
− 4

(x+ y)2

)
≥ 0

(uy + vx)((x+ y)2 − 4xy)

xy(x+ y)2
≥ 0

(uy + vx)(x− y)2

xy(x+ y)2
≥ 0

which clearly holds for positive reals u, v, x, y. Since the steps are re-
versible, we have that original inequality is solved.
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1.2 The AM-GM Inequality

The next important inequality is the AM-GM inequality, or the Arithmetic
Mean - Geometric Mean inequality. In example 1.1.1, we proved the AM-GM
inequality for the n = 2 case. Here we have its generalization.

Theorem 1.2.1 (AM-GM Inequality): Let a1, a2, · · · an be non-negative real
numbers, then,

a1 + a2 + · · ·+ an
n

≥ n
√
a1a2 · · · an

with equality if and only if a1 = a2 = · · · = an.

Proof. (By Cauchy) We will prove inductively that the inequality satisfies for
any n = 2k where k is a natural number. We’ll start by proving the n = 2
case:

a1 + a2
2

≥
√
a1a2

a1 + a2 ≥ 2
√
a1a2

(a1 + a2)
2 ≥ 4a1a2

a21 + 2a1a2 + a22 ≥ 4a1a2

a21 − 2a1a2 + a22 ≥ 0

(a1 − a2)2 ≥ 0

Thus, the inequality follows by the Trivial Inequality, with equality when a1 =
a2. Now we assume the inequality holds for some n = 2k and prove for n =
2k+1:

a1 + a2 + · · ·+ a2k+1

2k+1
=

a1 + · · ·+ a2k

2k
+
a2k+1 + · · ·+ a2k+1

2k

2
a1 + a2 + · · ·+ a2k+1

2k+1
≥

2k
√
a1a2 · · · a2k + 2k

√
a2k+1 · · · a2k+1

2
a1 + a2 + · · ·+ a2k+1

2k+1
≥ 2k+1√a1a2 · · · a2k+1 .
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A Brief Introduction to Inequalities 1.2

Note that in the last step we applied the AM-GM inequality for the n = 2 case.
So far, we have proved the AM-GM inequality for all powers of 2. To prove the
inequality for all n: we take any n and let m be such that 2m < n ≤ 2m+1 (it’s
important to note that such m always exists) and set p = a1+···+an

n
. Applying

the AM-GM inequality for 2m+1 terms we have

a1 + a2 + · · ·+ an + (2m+1 − n)p

2m+1
≥ 2m+1√

a1a2 · · · anp2m+1−n

pn+ (2m+1 − n)p

2m+1
≥ 2m+1√

a1a2 · · · anp2m+1−n

p ≥ 2m+1√
a1a2 · · · anp2m+1−n

p2
m+1 ≥ a1a2 · · · anp2

m+1−n

pn ≥ a1a2 · · · an
p ≥ n

√
a1a2 · · · an

a1 + a2 + · · ·+ an
n

≥ n
√
a1a2 · · · an

By using previously proven cases of the AM-GM inequality, we kept the con-
ditions for equality. Therefore, equality holds when a1 = a2 = · · · = an.

Example 1.2.2: Let a, b and c be non-negative real numbers such that abc =
1. Prove that

a+ b+ c ≥ 3

Proof. The AM-GM inequality tells us that,

a+ b+ c

3
≥ 3
√
abc

By substituting abc = 1 and multiplying by 3 we have,

a+ b+ c ≥ 3

which is what we wanted to prove, so we are done.

In the next example, it is important to note that if a, b, c and d are non-
negative real numbers and a ≥ b, c ≥ d, then ac ≥ bd.
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Example 1.2.3: Let a, b and c be positive real numbers. Prove that

(a+ b)(b+ c)(a+ c) ≥ 8abc

Proof. The AM-GM Inequality tells us that,

a+ b ≥ 2
√
ab

b+ c ≥ 2
√
bc

a+ c ≥ 2
√
ac

By multiplying these inequalities together we get,

(a+ b)(b+ c)(a+ c) ≥ 8abc

And we’re done!

Our final two examples will show how useful the AM-GM inequality can
be with an olympiad level problem.

Example 1.2.4: (St. Petersburg City Mathematical Olympiad, 1999) Let
x0 > x1 > · · · > xn be real numbers. Prove that

x0 +
1

x0 − x1
+

1

x1 − x2
+ · · ·+ 1

xn−1 − xn
≥ xn + 2n.

Proof. Let ak = xk − xk+1 > 0 so that our inequality is equivalent to

x0 − xn +
1

a0
+

1

a1
+ · · ·+ 1

an−1
≥ 2n.

Next, we notice that a0 + a1 + · · ·+ an−1 = x0 − xn, so our inequality is again
equivalent to

(a0 + a1 + · · ·+ an−1) +
1

a0
+ · · ·+ +

1

an−1
≥ 2n

or, (
a0 +

1

a0

)
+

(
a1 +

1

a1

)
+ · · ·+

(
an−1 +

1

an−1

)
≥ 2n.

13
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Finally, by the AM-GM Inequality, we have that ak +
1

ak
≥ 2. Applying this

inequality to each term in the previous inequality immediately gives us our
result.

Example 1.2.5: (IMO, 2012) Let n ≥ 3 be a natural number, and let
a2, a3, · · · , an be positive real numbers such that a2a3 · · · an = 1. Prove that

(1 + a2)
2(1 + a3)

3 · · · (1 + an)n > nn.

Proof. Note that for all 2 ≤ k ≤ n, we have

(1 + ak)
k =


 1

k − 1
+

1

k − 1
+ · · ·+ 1

k − 1︸ ︷︷ ︸
k−1

+ ak


k

≥ kkak
(k − 1)k−1

Multiplying all of these terms together we get

(1 + a2)
2(1 + a3)

3 · · · (1 + an)n ≥
(

22a2
11

)(
33a3
22

)
· · ·
(

nnan
(n− 1)n−1

)
It’s easy to see that all of the kk terms cancel out except for nn and 11, so
we’re left with

(1 + a2)
2(1 + a3)

3 · · · (1 + an)n ≥ a2a3 · · · an · nn

but we know that a2a3 · · · an = 1, so it’s equivalent with

(1 + a2)
2(1 + a3)

3 · · · (1 + an)n ≥ nn.

Lastly, we need to prove that the equality case never happens. Since we
applied AM-GM with terms ak and k−1 terms of 1

k−1 , equality happens when

ak = 1
k−1 . However, this does not satisfy the condition that a2a3 · · · an = 1.

So equality can never happen, which is what we wanted to prove.
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1.2.1 Practice Problems

1. Let a and b be positive real numbers. Prove that

I.
2(a2 + b2) ≥ (a+ b)2

II.
a

b
+
b

a
≥ 2

III.

(a+ b)

(
1

a
+

1

b

)
≥ 4

IV.
(a+ 2b)(b+ 2a) > 8ab

Why is equality not possible?

V.
a3 + b3 ≥ ab(a+ b)

2. Let a, b and c be positive real numbers. Prove that

I.
a3 + 8b3 + 27c3 ≥ 18abc

II.

(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
≥ 9

III.
a+ b+ c ≥ 2

√
a+ b+ c− 1

IV.

(a+ b+ c)
√

2 ≥ 4
√

2ab(a2 + b2) + 4
√

2bc(b2 + c2) + 4
√

2ac(a2 + c2)

V. (Nesbitt’s Inequality)

a

b+ c
+

b

a+ c
+

c

a+ b
≥ 3

2

15
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1.2.2 Solutions

1. Let a and b be positive real numbers. Prove that

I.

2(a2 + b2) ≥ (a+ b)2

Proof. We start by expanding both sides and simplifying

2a2 + 2b2 ≥ a2 + 2ab+ b2

is equivalent to

a2 + b2 ≥ 2ab

which follows from the AM-GM inequality.

II.
a

b
+
b

a
≥ 2

Proof. Let x = a
b

and the inequality is equivalent to

x+
1

x
≥ 2

which follows from AM-GM as we have

x+
1

x
≥ 2

√
x · 1

x
= 2

III.

(a+ b)

(
1

a
+

1

b

)
≥ 4

16
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Proof. By AM-GM we have

a+ b ≥ 2
√
ab

and
1

a
+

1

b
≥ 2

√
1

ab

multiply these two inequalities together and you get

(a+ b)

(
1

a
+

1

b

)
≥ (2
√
ab)

(
2

√
1

ab

)
= 4

which is what we wanted to prove.

IV.
(a+ 2b)(b+ 2a) > 8ab

Why is equality not possible?

Proof. By AM-GM we have

a+ 2b ≥ 2
√

2ab

with equality when a = 2b and

b+ 2a ≥ 2
√

2ab

with equality when b = 2a. When we multiply these inequalities to-
gether, we get

(a+ 2b)(b+ 2a) ≥ 8ab

and equality only holds when a = 2b and b = 2a which cannot happen
simultaneously unless a = b = 0 but a and b are positive real numbers
so this case does not occur. Thus the inequality is strict.

V.
a3 + b3 ≥ ab(a+ b)

17
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Proof. By the AM-GM inequality, we have

a3 + a3 + b3 ≥ 3
3
√
a3 · a3 · b3 = 3a2b

and

b3 + b3 + a3 ≥ 3
3
√
b3 · b3 · a3 = 3ab2

adding these inequalities together we get

3(a3 + b3) ≥ 3(a2b+ ab2) = 3ab(a+ b)

Moreover, after dividing by 3 this inequality is equivalent to

a3 + b3 ≥ ab(a+ b).

2. Let a, b and c be positive real numbers. Prove that

I.

a3 + 8b3 + 27c3 ≥ 18abc

Proof. This a pretty straightforward application of the AM-GM inequal-
ity. We note that by the AM-GM Inequality, we have

a3 + 8b3 + 27c3 = a3 + (2b)3 + (3c)3 ≥ 3 3
√
a3 · (2b)3 · (3c)3 = 18abc.

II.

(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
≥ 9

Proof. We apply the same idea we used earlier and use the AM-GM
Inequality on each term of the two terms. By the AM-GM Inequality,
we have

a+ b+ c ≥ 3
3
√
abc

18
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as well as
1

a
+

1

b
+

1

c
≥ 3

3

√
1

abc

next we multiply these two inequalities together to get

(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
≥ (3

3
√
abc)

(
3

3

√
1

abc

)
= 9

which is what we wanted to prove.

III.

a+ b+ c ≥ 2
√
a+ b+ c− 1

Proof. Let x = a+ b+ c then the inequality is equivalent with

x ≥ 2
√
x− 1

or

x+ 1 ≥ 2
√
x

which follows directly from the AM-GM Inequality.

IV.

(a+ b+ c)
√

2 ≥ 4
√

2ab(a2 + b2) + 4
√

2bc(b2 + c2) + 4
√

2ac(a2 + c2)

Proof. This problem is indeed a bit tricky. We note that by the AM-GM
Inequality we have

√
2ab(a2 + b2) ≤ (2ab) + (a2 + b2)

2
=

(a+ b)2

2

Furthermore, if we take the square root of both sides we get

4
√

2ab(a2 + b2) ≤ a+ b√
2

19
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By adding this inequality cyclically, we get

2(a+ b+ c)√
2

≥ 4
√

2ab(a2 + b2) + 4
√

2bc(b2 + c2) + 4
√

2ac(a2 + c2)

and it’s clear that

2(a+ b+ c)√
2

= (a+ b+ c)
√

2

so we’re done!

V. (Nesbitt’s Inequality)

a

b+ c
+

b

a+ c
+

c

a+ b
≥ 3

2

Proof. Rewrite the inequality with cyclic notation so that it is equivalent
with ∑

cyc

a

b+ c
≥ 3

2

Furthermore, we may add 1 to each term so that they share the same
denominator∑

cyc

(
a+ b+ c

b+ c

)
=
∑
cyc

(
a

b+ c
+ 1

)
≥ 3

2
+ 3 =

9

2

or

(a+ b+ c)

(∑
cyc

1

b+ c

)
≥ 9

2

moreover, if we let x = b+c, y = a+c and z = a+ b, then our inequality
is equivalent with (

x+ y + z

2

)(
1

x
+

1

y
+

1

z

)
≥ 9

2
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which, after multiplying by 2, gives us

(x+ y + z)

(
1

x
+

1

y
+

1

z

)
≥ 9

but this is equivalent to problem 2 part II, we simply apply the same
ideas and we’re done.

Remarks: ∑
cyc

a

b+ c
=

a

b+ c
+

b

a+ c
+

c

a+ b∑
cyc

(
a

b+ c
+ 1

)
=

(
a

b+ c
+ 1

)
+

(
b

a+ c
+ 1

)
+

(
c

a+ b
+ 1

)
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1.3 The Cauchy-Schwarz Inequality

In this section, we’ll present a powerful theorem, follow it with some examples
and end off with a nice set of problems.

Theorem 1.3.1 (The Cauchy-Schwarz Inequality): Let a1, a2, · · · an, b1, b2, · · · , bn
be real numbers, then,

(a21 + a22 + · · ·+ a2n)(b21 + b22 + · · ·+ b2n) ≥ (a1b1 + a2b2 + · · ·+ anbn)2

with equality if and only if
a1
b1

=
a2
b2

= · · · = an
bn

.

Proof. Let fi(x) = (aix− bi)2 and consider the sum

P (x) =
n∑
i=1

fi(x) = (a21 + · · ·+ a2n)x2 − 2x(a1b1 + · · ·+ anbn) + (b21 + · · ·+ b2n)

It’s clear that since P (x) is the sum of squares then it is always non-negative,
so P (x) ≥ 0. Equality happens when f1(x) = · · · = fn(x) = 0 or

a1
b1

=
a2
b2

= · · · = an
bn
.

Furthermore, P (x)’s discriminant should therefore be non-positive (as the
roots must be complex or 0). And so we have

(−2(a1b1 + · · ·+ anbn))2 − 4(a21 + · · ·+ a2n)(b21 + · · ·+ b2n) ≤ 0

4(a1b1 + · · ·+ anbn)2 − 4(a21 + · · ·+ a2n)(b21 + · · ·+ b2n) ≤ 0

(a1b1 + · · ·+ anbn)2 − (a21 + · · ·+ a2n)(b21 + · · ·+ b2n) ≤ 0.

Which is equivalent to our original inequality.

Example 1.3.2: Let a, b, c be real numbers. Prove that

a2 + b2 + c2 ≥ ab+ bc+ ac
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Proof. By the Cauchy-Schwarz Inequality, we have that,

(a2 + b2 + c2)(b2 + c2 + a2) ≥ (ab+ bc+ ac)2

Note that this is equivalent to

(a2 + b2 + c2)2 ≥ (ab+ bc+ ac)2

And the result is evident, so we are done. (Note: We solved this problem using
perfect squares in the previous section. This shows us that inequalities can
have multiple solutions, and in fact, most inequalities do.)

Example 1.3.3: Let a, b and c be positive real numbers. Prove that

(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
≥ 9

Proof. Since a, b and c are positive real numbers we can let a, b and c be x2, y2

and z2, respectively. This makes our inequality now equivalent with,

(x2 + y2 + z2)

(
1

x2
+

1

y2
+

1

z2

)
≥ 9

Next, we note that by the Cauchy-Schwarz Inequality we have,

(x2 + y2 + z2)

(
1

x2
+

1

y2
+

1

z2

)
≥
(
x · 1

x
+ y · 1

y
+ z · 1

z

)2

= 9

and we’re done.

Example 1.3.4: (Ireland, 1998) Prove that if a, b, c are positive real numbers,
then,

9

a+ b+ c
≤ 2

(
1

a+ b
+

1

b+ c
+

1

c+ a

)
and,

1

a+ b
+

1

b+ c
+

1

c+ a
≤ 1

2

(
1

a
+

1

b
+

1

c

)
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Proof. We’ll prove the second inequality. By applying the Cauchy-Schwarz
Inequality on two variables as we did in the previous example, which had
three variables, we have,

(a+ b)

(
1

a
+

1

b

)
≥ 4 =⇒ 1

a
+

1

b
≥ 4

a+ b

(b+ c)

(
1

b
+

1

c

)
≥ 4 =⇒ 1

b
+

1

c
≥ 4

b+ c

(a+ c)

(
1

a
+

1

c

)
≥ 4 =⇒ 1

a
+

1

c
≥ 4

a+ c

Adding these inequalities together we get,

2

(
1

a
+

1

b
+

1

c

)
≥ 4

(
1

a+ b
+

1

b+ c
+

1

a+ c

)
Next, we divide by 4 and we’re done. The first inequality is left as an exercise
for the reader.

Example 1.3.5: Let a, b, c, x, y and z be positive real numbers such that
a+ b+ c = x+ y + z. Prove that

a2

y + z
+

b2

x+ z
+

c2

x+ y
≥ a+ b+ c

2

Proof. We start by noting that the only variables used in the right hand side
of our inequality are a, b and c, hence, we want to apply the Cauchy-Schwarz
Inequality in such a way that the x, y and z’s are eliminated. This hints us to
think of applying the Cauchy-Schwarz Inequality like so

((y + z) + (x+ z) + (x+ y))

(
a2

y + z
+

b2

x+ z
+

c2

x+ y

)
≥ (a+ b+ c)2

Next, we note that (y + z) + (x+ z) + (x+ y) = 2(a+ b+ c), thus

a2

y + z
+

b2

x+ z
+

c2

x+ y
≥ a+ b+ c

2
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Example 1.3.6: Let x, y and z be positive real numbers. Prove that

√
(x+ y)(y + z)(x+ z) + xyz ≥ x

√
y + z

2
+ y

√
x+ z

2
+ z

√
x+ y

2

Proof. We use the identity shown in the first section,

xyz = (x+ y + z)(xy + yz + xz)− (x+ y)(y + z)(x+ z)

to infer that,

(x+ y)(y + z)(x+ z) + xyz = (x+ y + z)(xy + yz + xz).

We can deduce that our inequality is equivalent to proving

√
(x+ y + z)(xy + yz + xz) ≥ x

√
y + z

2
+ y

√
x+ z

2
+ z

√
x+ y

2
.

or √
2(x+ y + z)(xy + yz + xz) ≥ x

√
y + z + y

√
x+ z + z

√
x+ y

This follows from the Cauchy-Schwarz Inequality as we know that

2(xy + yz + xz) = x(y + z) + y(x+ z) + z(x+ y)

and we’re done.

1.3.1 Practice Problems

When solving these problems you need only to remember one thing: be clever!

1. (Ireland, 1999) Let a, b, c, d be positive real numbers which sum up to 1.
Prove that

a2

a+ b
+

b2

b+ c
+

c2

c+ d
+

d2

d+ a
≥ 1

2

2. Let a, b and c be real numbers. Prove that

2a2 + 3b2 + 6c2 ≥ (a+ b+ c)2
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3. Let a, b and c be positve real numbers. Prove that

a2

c
+
b2

a
+
c2

b
≥ a+ b+ c

4. (Central American and Caribbean Math Olympiad, 2009) Let x, y, z be
real numbers such that xyz = 1. Prove that

(x2 + 1)(y2 + 1)(z2 + 1) ≥
(

1 +
x

y

)(
1 +

y

z

)(
1 +

z

x

)
When is there equality?

5. Let a, b and c be positive real numbers such that abc = 1. Prove that

a2 + b2 + c2 ≥ a+ b+ c

6. (Puerto Rican Mathematical Olympiad Ibero TST, 2009) Let ha, hb and
hc be the altitudes of triangle ABC and let r be its inradius. Prove that

ha + hb + hc ≥ 9r

7. (Czech and Slovak Republics, 1999) For arbitrary positive numbers a, b
and c, Prove that

a

b+ 2c
+

b

c+ 2a
+

c

a+ 2b
≥ 1

Note: This is also a problem from the International Zhautykov Olympiad
in 2005.

8. (Iran, 1998) Let x, y, z > 1 and 1
x

+ 1
y

+ 1
z

= 2. Prove that

√
x+ y + z ≥

√
x− 1 +

√
y − 1 +

√
z − 1

9. (Belarus IMO TST, 1999) Let a, b, c be positive real numbers such that
a2 + b2 + c2 = 3. Prove that

1

1 + ab
+

1

1 + bc
+

1

1 + ac
≥ 3

2
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10. (France IMO TST, 2006) Let a, b, c be positive real numbers such that
abc = 1. Prove that

a

(a+ 1)(b+ 1)
+

b

(b+ 1)(c+ 1)
+

c

(c+ 1)(a+ 1)
≥ 3

4
.

When is there equality?
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1.3.2 Solutions

1. (Ireland, 1999) Let a, b, c, d be positive real numbers which sum up to 1.
Prove that

a2

a+ b
+

b2

b+ c
+

c2

c+ d
+

d2

d+ a
≥ 1

2

Proof. By the Cauchy-Schwarz Inequality, we have(∑
cyc

a+ b

)(
a2

a+ b
+

b2

b+ c
+

c2

c+ d
+

d2

d+ a

)
≥ (a+ b+ c+ d)2

or
a2

a+ b
+

b2

b+ c
+

c2

c+ d
+

d2

d+ a
≥ (a+ b+ c+ d)2

2(a+ b+ c+ d)
.

Since a+ b+ c+ d = 1, we have that

(a+ b+ c+ d)2

2(a+ b+ c+ d)
=

1

2
.

So we have
a2

a+ b
+

b2

b+ c
+

c2

c+ d
+

d2

d+ a
≥ 1

2

which is what we wanted to prove.

2. Let a, b and c be real numbers. Prove that

2a2 + 3b2 + 6c2 ≥ (a+ b+ c)2

Proof. We start by noting the identity

1

2
+

1

3
+

1

6
= 1

also, by the Cauchy-Schwarz Inequality, we have(
1

2
+

1

3
+

1

6

)
(2a2 + 3b2 + 6c2) ≥ (a+ b+ c)2.

Using our identity the result is evident!
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3. Let a, b and c be positve real numbers. Prove that

a2

c
+
b2

a
+
c2

b
≥ a+ b+ c

Proof. By the Cauchy-Schwartz Inequality, we have

(c+ a+ b)

(
a2

c
+
b2

a
+
c2

b

)
≥ (a+ b+ c)2

then divide both sides by a+ b+ c and we get the desired result.

4. (Central American and Caribbean Math Olympiad, 2009) Let x, y, z be
real numbers such that xyz = 1. Prove that

(x2 + 1)(y2 + 1)(z2 + 1) ≥
(

1 +
x

y

)(
1 +

y

z

)(
1 +

z

x

)
When is there equality?

Proof. To simplify the inequality, we multiply the right hand side by xyz

(x2 + 1)(y2 + 1)(z2 + 1) ≥
(

1 +
x

y

)(
1 +

y

z

)(
1 +

z

x

)
xyz

and note that(
1 +

x

y

)(
1 +

y

z

)(
1 +

z

x

)
xyz = (x+ y)(y + z)(z + x)

Furthermore, by the Cauchy-Schwarz Inequality, we have

(x2 + 1)(1 + y2) ≥ (x+ y)2 =⇒
√

(x2 + 1)(y2 + 1) ≥ x+ y

by multiplying this inequality cyclically we get the desired result and
we’re done. There is equality when x = y = z = 1.

5. Let a, b and c be positive real numbers such that abc = 1. Prove that

a2 + b2 + c2 ≥ a+ b+ c
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Proof. First we note that by the AM-GM inequality we have

a2 + b2 + c2 ≥ 3
3
√
a2b2c2 = 3

next we multiply by a2 + b2 + c2 on both sides

(a2 + b2 + c2)2 ≥ 3(a2 + b2 + c2)

but by the Cauchy-Schwarz Inequality we have

3(a2 + b2 + c2) ≥ (a+ b+ c)2

thus
(a2 + b2 + c2)2 ≥ (a+ b+ c)2

then since both terms are positive we can take the square root and we
get

a2 + b2 + c2 ≥ a+ b+ c

which is what we wanted to prove, so we’re done.

6. (Puerto Rican Mathematical Olympiad Ibero TST, 2009) Let ha, hb and
hc be the altitudes of triangle ABC and let r be its inradius. Prove that

ha + hb + hc ≥ 9r

Proof. We’ll start by proving the geometric identity

1

r
=

1

ha
+

1

hb
+

1

hc
.

It follows from the fact that

[ABC] =
aha
2

=
bhb
2

=
chc
2

= rs

where [ABC] is the area of triangle ABC and a, b, c, s are the sides and
semi-perimeter of the triangle, respectively. This allows us to note that

1

ha
=

a

2rs
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so that
1

ha
+

1

hb
+

1

hc
=

(
1

2rs

)
(a+ b+ c)

but a+ b+ c = 2s by definition so

1

ha
+

1

hb
+

1

hc
=

1

r

Furthermore, by the Cauchy-Schwarz Inequality, we have(
1

ha
+

1

hb
+

1

hc

)
(ha + hb + hc) ≥ 9

or (
1

r

)
(ha + hb + hc) ≥ 9.

Then we multiply by r and we’re done!

7. (Czech and Slovak Republics, 1999) For arbitrary positive numbers a, b
and c, Prove that

a

b+ 2c
+

b

c+ 2a
+

c

a+ 2b
≥ 1

Note: This is also a problem from the International Zhautykov Olympiad
in 2005.

Proof. By the Cauchy-Schwarz Inequality, it is clear that(∑
cyc

a(b+ 2c)

)(
a

b+ 2c
+

b

c+ 2a
+

c

a+ 2b

)
≥ (a+ b+ c)2

Therefore, the following inequality also holds

a

b+ 2c
+

b

c+ 2a
+

c

a+ 2b
≥ (a+ b+ c)2

a(b+ 2c) + b(c+ 2a) + c(a+ 2b)

and finally, since

a(b+ 2c) + b(c+ 2a) + c(a+ 2b) = (a+ b+ c)2

the right hand side is equal to 1 and we’re done.
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8. (Iran, 1998) Let x, y, z > 1 and 1
x

+ 1
y

+ 1
z

= 2. Prove that

√
x+ y + z ≥

√
x− 1 +

√
y − 1 +

√
z − 1

Proof. We start by rewriting the condition

1

x
+

1

y
+

1

z
= 2

−
(

1

x
+

1

y
+

1

z

)
= −2

3−
(

1

x
+

1

y
+

1

z

)
= 1

x− 1

x
+
y − 1

y
+
z − 1

z
= 1.

Next, by the Cauchy-Schwarz Inequality, we have√√√√(x+ y + z)

(∑
cyc

x− 1

x

)
≥
√
x− 1 +

√
y − 1 +

√
z − 1

or √
x+ y + z ≥

√
x− 1 +

√
y − 1 +

√
z − 1

which is what we wanted to prove, so we’re done!

9. (Belarus IMO TST, 1999) Let a, b, c be positive real numbers such that
a2 + b2 + c2 = 3. Prove that

1

1 + ab
+

1

1 + bc
+

1

1 + ac
≥ 3

2

Proof. By the Cauchy-Schwarz Inequality, we have

((1 + ab) + (1 + bc) + (1 + ac))

(
1

1 + ab
+

1

1 + bc
+

1

1 + ac

)
≥ 9
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or
1

1 + ab
+

1

1 + bc
+

1

1 + ac
≥ 9

(1 + ab) + (1 + bc) + (1 + ac)

thus, it is sufficient to prove that

9

(1 + ab) + (1 + bc) + (1 + ac)
≥ 3

2

or, after simplifying,
3 ≥ ab+ bc+ ac

which, using the condition, is equivalent to

a2 + b2 + c2 ≥ ab+ bc+ ac

or
(a− b)2 + (b− c)2 + (c− a)2 ≥ 0

which of course is true.

10. (France IMO TST, 2006) Let a, b, c be positive real numbers such that
abc = 1. Prove that

a

(a+ 1)(b+ 1)
+

b

(b+ 1)(c+ 1)
+

c

(c+ 1)(a+ 1)
≥ 3

4
.

When is there equality?

Proof. We begin by multiplying both sides by 4(a+ 1)(b+ 1)(c+ 1)

4(a(c+ 1) + b(a+ 1) + c(b+ 1)) ≥ 3(a+ 1)(b+ 1)(c+ 1)

which is equivalent to

4(ab+ bc+ ac+ a+ b+ c) ≥ 3(abc+ ab+ bc+ ac+ a+ b+ c+ 1)

or
ab+ bc+ ac+ a+ b+ c ≥ 3(abc+ 1) = 3(1 + 1) = 6

which follows from AM-GM and we’re done. We have equality when
a = b = c = 1. Note that we didn’t use the Cauchy-Schwarz Inequality.
See if you can find a Cauchy-Schwarz solution.
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1.4 Using Inequalities to Solve Optimization

Problems

“When, with a fixed perimeter, is a rectangle’s area the greatest?” “Given
two positive numbers with a fixed product P , what is the smallest possible
value of their sum?” These are the types of problems that we’ll tackle in this
section. They ask to find the conditions for maximums and minimums. So
let’s start with the first example.

Example 1.4.1: When, with a fixed perimeter, is a rectangle’s area the great-
est?

Proof. Let the fixed perimeter be S and sides of the rectangle be a and b, so
that S = 2a+ 2b. Now note that a− S

4
= S

4
− b follows from S = 2a+ 2b and

so we can let k = a − S
4

= S
4
− b. This, in turn, tells us that a and b can be

written as S
4

+ k and S
4
− k, respectively. Thus, we have

Area of rectangle = ab =

(
S

4
+ k

)(
S

4
− k
)

=
S2

16
− k2

Since S is fixed constant, we have that the only variable affecting the area of
the rectangle is k. By minimizing k2 we maximize the area. Since k2 ≥ 0, the
lowest possible value for k2 is then 0, which happens when k = 0. When k = 0
we have that a = b = S

4
and so the area of rectangle with fixed perimeter is

maximized when it is a square. Alternatively, by the AM-GM inequality we
have that

a+ b

2
≥
√
ab⇔ ab ≤

(
a+ b

2

)2

=
S2

16

with equality if and only if a = b, i.e. when the rectangle is a square.

Note that we were able to find the maximum area by rewriting the expres-
sion in terms of only one variable. When working on optimization problems,
it’s important to try to make the expression dependent on less variables.

Example 1.4.2: Given two positive numbers with a fixed product P , what
is the smallest possible value of their sum?
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Proof. Let a and b be the two numbers, and so ab = P . By the AM-GM
Inequality, we have

a+ b

2
≥
√
ab

a+ b ≥ 2
√
ab

a+ b ≥ 2
√
P

and so the smallest possible value for their sum is 2
√
P and it is achieved

when a = b =
√
P .

Example 1.4.3: We are given a segment AB of length L. Consider any point
P on this segment and rotate PA around the point P so that A is taken to A′

and A′PB is a right triangle (∠A′PB = 90◦). What is the shortest possible
distance between A′ and B in terms of L and where is this point?

Proof. Note that if we let PA = x and PB = y then x+y = L and the distance
between A′B is

√
PA2 + PB2 =

√
x2 + y2 (by Pythagoras and PA′ = PA).

So we wish to minimize
√
x2 + y2. Applying the same idea as before we can

note that there exists a k ∈ R such that x = L
2

+ k and y = L
2
− k. Thus, we

wish to minimize

√
x2 + y2 =

√(
L

2
+ k

)2

+

(
L

2
− k
)2

=

√
L2

2
+ 2k2

But again, k2 ≥ 0 and L is fixed so the minimum is
√

L2

2
or
√
2L
2

. Since the

minimum is when k = 0, we get that PA = PB and so P is the midpoint of
L. Alternatively, we can note that

(x− y)2 ≥ 0

x2 + y2 ≥ 2xy

2(x2 + y2) ≥ (x+ y)2√
x2 + y2 ≥ x+ y√

2
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√
x2 + y2 ≥

√
2L

2

Thus, the minimum is
√
2L
2

and it is achieved when (x− y)2 = 0 which implies
that x = y (i.e. P is the midpoint of L).

Example 1.4.4: Determine the largest and smallest possible value of sin x+
cosx where x ∈ R.

Proof. Here we’ll exploit a nice identity about the sine function that states
that

sin
(
x+

π

4

)
=

(
1√
2

)
(sinx+ cosx)

for all x ∈ R. Since −1 ≤ sin
(
x+

π

4

)
≤ 1 by definition, it follows that

−
√

2 ≤ sinx+ cosx ≤
√

2

We must also show that these max and min values are attainable. To do this
we must find what values of x make sin

(
x+

π

4

)
equal to its extremes (1 and

−1). We can quickly show that x = π
4

makes the expression equal to 1 and
that x = 5π

4
results in −1. So the max and min values are indeed attainable.

Here’s another way one might solve this problem. Let a = sinx and b =
cosx and note that a2 + b2 = 1. We now look for an inequality relating a2 + b2

and a+ b.

(a− b)2 ≥ 0

a2 + b2 ≥ 2ab

2(a2 + b2) ≥ (a+ b)2

2 ≥ (a+ b)2.

Therefore, |a+ b| ≤
√

2 which is equivalent to

−
√

2 ≤ sinx+ cosx ≤
√

2.
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The next example presents an olympiad level optimization problem and
the kind of solution you are expected to present at these competitions.

Example 1.4.5: (Ibero, 2010) The arithmetic, geometric and harmonic mean
of two distinct positive integers are different integers. Find the smallest pos-
sible value for the arithmetic mean.

Proof. (Posted by uglysolutions at artofproblemsolving.com)1 Let our positive
integers be a 6= b. Let d = gcd(a, b), thus a = dm, b = dn, with gcd(m,n) = 1.

The harmonic mean 2
1
a
+ 1

b

is an integer, therefore a + b | 2ab, which means

d(m+ n) | 2d2mn and so m+ n | 2dmn which leaves us with m+ n | 2d since
m+ n and mn are relatively prime.

The arithmetic mean is an integer, thus 2 | d(m+ n).

The geometric mean is an integer, hence d2mn is a perfect square which
implies that mn is a perfect square and so both m and n are perfect squares,
because they are relatively prime.

We want to find the minimum value of d(m+n)
2

under these conditions.

If m + n is odd, we get m + n | d and 2 | d, thus d ≥ 2(m + n). But

m+n ≥ 1+4 = 5, thus d(m+n)
2
≥ 10×5

2
= 25. If m+n is even, we get d ≥ m+n

2
,

since m+ n ≥ 1 + 9 = 10, again we get d(m+n)
2
≥ 5×10

2
= 25.

So the answer is 25. Examples attaining this minimum value are (5, 45),
(10, 40).

Example 1.4.6: Let ABC be a triangle. Suppose we keep points B and C
fixed but we let A vary such that the perimeter, 2s, stays constant. What is
the largest possible area in terms of s and BC?

1http://www.artofproblemsolving.com/Forum/viewtopic.php?p=2029531
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Proof. We let a = BC and note that the points that satisfy the conditions
define an ellipse whose foci are B and C and the point A lies on the graph of the
ellipse. Furthermore, we maximize the area by maximizing the distance from
the point A to the segment BC (altitude in the triangle) since the base remains
constant. Clearly, the point with the largest distance is the intersection of the
perpendicular bisector of BC with the graph of the parabola. This point
is then equidistant from the foci, so our triangle is isosceles. If we let the
second/third side be denoted as b, then the area of the triangle is√

s(s− a)(s− b)(s− c) =
√
s(s− a)(s− b)2 =

a

2

√
s(s− a)

which follows from noting that

a+ 2b = 2s =⇒ s− b =
a

2
.

1.4.1 Practice Problems

1. Let a, b, c be positive real numbers such that a + b + c = 3. Determine
the maximum attainable value of ab+ bc+ ac.

2. Determine the least surface area that a rectangular box with volume 8
can have.

3. Show that of all rectangles inscribed in a given circle the square has the
largest area.

4. Let P be a point inside a given triangle ABC. Let AP,BP and CP
intersect sides BC,AC and AB at points D,E and F , respectively. De-
termine the points P that minimize the sum

AF

FB
+
BD

DC
+
CE

EA

5. Let a, b and c be positive real numbers such that abc = 1. Maximize the
expression

P = (max{a, b, c})2 −max{a2 − bc, b2 − ac, c2 − ab}
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6. (APMO, 1990) Consider all the triangles ABC which have a fixed base
BC and whose altitude from A is a constant h. For which of these
triangles is the product of its altitudes a maximum?

7. (IMO, 1981) Consider a variable point P inside a given triangle ABC.
Let D,E, F be the feet of the perpendiculars from point P to the lines
BC,CA,AB, respectively. Find all points P which minimize the sum

BC

PD
+
CA

PE
+
AB

PF
.
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1.4.2 Solutions

1. Let a, b, c be positive real numbers such that a + b + c = 3. Determine
the maximum attainable value of ab+ bc+ ac.

Proof. Note that

(a+ b+ c)2 ≥ 3(ab+ bc+ ac)⇔ (a− b)2 + (b− c)2 + (c− a)2 ≥ 0

thus the inequality holds. Furthermore, we know that a + b + c = 3 so
our inequality is equivalent with

9 ≥ 3(ab+ bc+ ac) =⇒ 3 ≥ ab+ bc+ ac.

Thus, the maximum value ab+ bc+ ac can have is 3 and it’s attainable
with a = b = c = 1.

2. Determine the least surface area that a rectangular box with volume 8
can have.

Proof. Let the dimensions of the rectangular box be a× b× c. We have
that abc = 8 and the surface area is equal to 2(ab+bc+ac). The AM-GM
inequality gives us that

2(ab+ bc+ ac) ≥ 2(3 3
√

(abc)2) = 6
3
√

64 = 24 .

It’s achieved when a = b = c = 2.

3. Show that of all rectangles inscribed in a given circle the square has the
largest area.

Proof. Assume we have an arbitrary inscribed rectangle drawn. Note
that this rectangle is made up of two congruent right triangles. Thus, we
need only to maximize one of the right triangles. Now consider one of the
right triangles inscribed in the circle, let’s call it ABC, its hypotenuse,
BC, is a diameter of the circle. Its area is base times height divided by 2.
Let the base be BC, the base is thus constant. So we need to maximize
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the height which is the distance from A to the hypotenuse (diameter).
It’s easy to see that this height is maximized when A is equidistant from
B and C thus making ABC isosceles. If the area of ABC is maximized
when it’s isosceles then the area of the rectangle is maximized when it’s
a square and we’re done.

Alternatively, we can note that the diameter (hypotenuse) is given and
so if the other two sides of the right triangle are a and b then our problem
turns into maximizing ab where a2 + b2 is some constant k. This follows
from AM-GM as we have

k

4
=
a2 + b2

4
≥ ab

2
.

This implies that the maximum area of the triangle is k
4

with equality
when a = b (i.e. when the triangle is isosceles).

4. Let P be a point inside a given triangle ABC. Let AP,BP and CP
intersect sides BC,AC and AB at points D,E and F , respectively. De-
termine the points P that minimize the sum

AF

FB
+
BD

DC
+
CE

EA

Proof. Ceva’s Theorem tells us that

AF

FB
· BD
DC
· CE
EA

= 1.

Thus, by AM-GM we have

AF

FB
+
BD

DC
+
CE

EA
≥ 3

3

√
AF

FB
· BD
DC
· CE
EA

= 3

with equality when
AF

FB
=
BD

DC
=
CE

EA
= k

We know that k3 = 1 and so k = 1 which implies F,D and E are
midpoints. Thus, P is the centroid.
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5. Let a, b and c be positive real numbers such that abc = 1. Maximize the
expression

P = (max{a, b, c})2 −max{a2 − bc, b2 − ac, c2 − ab}

Proof. Without loss of generality let a = max{a, b, c}. Note that

a2 − bc ≥ b2 − ac⇔ (a+ b+ c)(a− b) ≥ 0

since a+ b+ c > 0 and a ≥ b we have that a2 − bc ≥ b2 − ac. Similarly,
a2 − bc ≥ c2 − ab. Thus, we have that

a2 − bc = max{a2 − bc, b2 − ac, c2 − ab}.

This implies that
P = (a2)− (a2 − bc) = bc

So we need to maximize bc. Since abc = 1 and b, c ≤ a we have that
a3 ≥ abc = 1 =⇒ a ≥ 1 or 1 ≥ 1

a
= bc. So the maximum of bc is 1 and

it’s attained when a = b = c = 1.

6. (APMO, 1990) Consider all the triangles ABC which have a fixed base
BC and whose altitude from A is a constant h. For which of these
triangles is the product of its altitudes a maximum?

Proof. Let the altitudes be ha, hb, hc. Note that the conditions imply
that the area remains constant and that A moves along a line parallel to
BC passing through the original point A. Thus, we have

ha · a
2

=
hb · b

2
=
hc · c

2
= [ABC]

Multiplying these together we get

hahbhc(abc)

8
= [ABC]3

or

hahbhc =
8[ABC]3

abc
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which is maximized when abc is minimized (since 8[ABC]3 is constant).
Note that a is constant as well so we only need to minimize bc. Noting
that

bc sinA

2
= [ABC] =⇒ bc =

2[ABC]

sinA

tells us that bc is minimized when sinA is maximized. When ha ≤ a
2
,

we draw a circle with diameter BC and note where the line parallel to
BC which passes through A intersects this circle. Let these points be
P and P ′. It’s clear that ∠BPC and ∠BP ′C are both 90◦ and so we
can maximize sinA with these points, since sinP = sinP ′ = 1. When
ha >

a
2
, we still need to maximize sinA but in this case sinA = 1 is

unreachable. For this case, we know that A has to be move parallel to
BC to a point where sinBAC is maximized. We let T be any point on
this parallel line. By the Extended Law of Sines we have

sin∠BTC =
BC

2R
.

In this case R is the circumradius of triangle BTC and BC is constant.
Hence, to maximize sin∠BTC we need to minimize the circumradius
R. We can minimize the circumradius by minimizing the distance from
T to both B and C. This happens when T is equidistant from B and
C, in other words where triangle BTC is isosceles. We can construct T
by noting where BC’s perpendicular bisector intersects the line passing
through A that is parallel to BC. In conclusion, for ha ≤ a

2
we choose

a new point A′ which makes ∠BA′C = 90◦ such that AA′ is parallel
to BC. For ha >

a
2
, we choose the point A′ which makes the triangle

isosceles and maintains the same altitude. Both can be constructed as
shown in the proof.

7. (IMO, 1981) Consider a variable point P inside a given triangle ABC.
Let D,E, F be the feet of the perpendiculars from point P to the lines
BC,CA,AB, respectively. Find all points P which minimize the sum

BC

PD
+
CA

PE
+
AB

PF
.
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Proof. Let BC, AC and AB be denoted as a, b, c, respectively. Similarly,
denote PD, PE and PF by x, y, z, respectively. Note that we wish to
minimize

a

x
+
b

y
+
c

z
.

We know however that

ax

2
= [BPC],

by

2
= [CPA],

cz

2
= [APB]

adding these together we get

ax+ by + cz

2
= [BPC] + [CPA] + [APB] = [ABC]

Furthermore, by the Cauchy-Schwarz Inequality, we have

(ax+ by + cz)

(
a

x
+
b

y
+
c

z

)
≥ (a+ b+ c)2

or
a

x
+
b

y
+
c

z
≥ (a+ b+ c)2

ax+ by + cz
=

(a+ b+ c)2

2[ABC]
.

Which has equality when

ax
a
x

=
by
b
y

=
cz
c
z

or its equivalent
x2 = y2 = z2 =⇒ x = y = z

Thus, P is equidistant from sides BC, AC and AB from where it’s clear
that P is the incenter.
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Chapter 2

Advanced Theorems and Other
Methods

2.1 The Cauchy-Schwarz Inequality (General-

ized)

Let’s recall the Cauchy-Schwarz Inequality:

Theorem 2.1.1 (The Cauchy-Schwarz Inequality): Let a1, a2, · · · an, b1, b2, · · · , bn
be real numbers, then,

(a21 + a22 + · · ·+ a2n)(b21 + b22 + · · ·+ b2n) ≥ (a1b1 + a2b2 + · · ·+ anbn)2

with equality if and only if
a1
b1

=
a2
b2

= · · · = an
bn

.

We note that in the Cauchy-Schwarz Inequality, the left hand side has two
products where the terms inside are elevated to the second power. In Hölder’s
Inequality, we take that two and generalize it. For example, by Hölder’s In-
equality on positive real numbers a1, a2, a3, b1, b2 b3, c1, c2, c3, we have,

(a31 + a32 + a33)(b
3
1 + b32 + b33)(c

3
1 + c32 + c33) ≥ (a1b1c1 + a2b2c2 + a3b3c3)

3

It’s important to note that now, instead of there being two products with
terms inside being elevated to the second power, there are three products with

45



A Brief Introduction to Inequalities 2.1

terms inside elevated to the third power. Similarly, if we were to have four
products, then the terms inside would be elevated to the fourth power, and so
on. Formally, this inequality is equivalent to:

Theorem 2.1.2 (Hölder’s Inequality): For all aij > 0 where 1 ≤ i ≤ m,
1 ≤ j ≤ n we have

m∏
i=1

(
n∑
j=1

amij

)
≥

(
n∑
j=1

(
m∏
i=1

aij

))m

.

It’s derived from its more general version: Given real numbers x1, x2, · · · xn
and y1, y2, · · · , yn we have

∑
k=1

|xkyk| ≤

(∑
k=1

|xk|p
) 1

p
(∑
k=1

|yk|q
) 1

q

.

A proof of this theorem in its vector form can be found online at http:

//www.proofwiki.org/wiki/H%C3%B6lder’s_Inequality_for_Sums. Note
that the Cauchy-Schwarz Inequality is Hölder’s Inequality for the case m = 2.

Example 2.1.3: Let a, b and c be positive real numbers. Prove that

(a3 + 2)(b3 + 2)(c3 + 2) ≥ (a+ b+ c)3

Proof. By Hölder’s Inequality, we have that,

(a3 + 1 + 1)(1 + b3 + 1)(1 + 1 + c3) ≥
(

3
√
a3 · 1 · 1 +

3
√

1 · b3 · 1 +
3
√

1 · 1 · c3
)3

or
(a3 + 2)(b3 + 2)(c3 + 2) ≥ (a+ b+ c)3

And we’re done!

Example 2.1.4: Prove the Arithmetic Mean - Geometric Mean Inequality.
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Proof. The Arithmetic Mean - Geometric Mean Inequality states that for pos-
itive real numbers a1, a2, · · · , an the following inequality holds,

a1 + a2 + · · ·+ an
n

≥ n
√
a1a2a3 · · · an

Hence, it is equivalent to proving that,

a1 + a2 + · · ·+ an ≥ n n
√
a1a2a3 · · · an

or
(a1 + a2 + · · ·+ an)n ≥ (n n

√
a1a2 · · · an)n

Next we note that,

(a1 + a2 + · · ·+ an)n =

(∑
cyc

a1

)(∑
cyc

a2

)
· · ·

(∑
cyc

an

)

The result then follows directly by applying Hölder’s Inequality, and so we are
done!

Example 2.1.5 (Junior Balkan MO, 2002): Prove that for all positive real
numbers a, b, c, the following inequality takes place

1

b(a+ b)
+

1

c(b+ c)
+

1

a(c+ a)
≥ 27

2(a+ b+ c)2

Proof. This problem is probably one of the best examples of Hölder’s Inequal-
ity. It practically has Hölder’s Inequality written all over it. First, we note
that 33 = 27, hence we might expect Hölder’s Inequality to be used on the
product of three terms. Next we note that,

2(a+ b+ c) = (a+ b) + (b+ c) + (c+ a)

So, by multiplying both sides of the inequality by 2(a+ b+ c)2, it is equivalent
with,

((a+ b) + (b+ c) + (c+ a))(b+ c+ a)

(
1

b(a+ b)
+

1

c(b+ c)
+

1

a(c+ a)

)
≥ 27
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Which is true by Hölder’s Inequality. Hence the inequality,

1

b(a+ b)
+

1

c(b+ c)
+

1

a(c+ a)
≥ 27

2(a+ b+ c)2

is also true, so we are done!

Example 2.1.6: Let a and b be positive real numbers such that their sum is
1. Prove that

1

a2
+

1

b2
≥ 8

Proof. First we note that,

1

a2
+

1

b2
= (a+ b)(a+ b)

(
1

a2
+

1

b2

)
Then, by Hölder’s Inequality, we have,

(a+ b)(a+ b)

(
1

a2
+

1

b2

)
≥

(
3

√
a · a
a2

+
3

√
b · b
b2

)3

= 8

Example 2.1.7: Let a, b and c be positive real numbers such that a+b+c = 1.
Prove that

4a3 + 9b3 + 36c3 ≥ 1

Proof. Note that,
1

2
+

1

3
+

1

6
= 1

Then, by applying Hölder’s Inequality, we have,(
1

2
+

1

3
+

1

6

)(
1

2
+

1

3
+

1

6

)
(4a3 + 9b3 + 36c3) ≥ (a+ b+ c)3 = 1

And we’re done.
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Example 2.1.8: Let a, b and c be positive real numbers. Prove that

a+ b√
a+ 2c

+
b+ c√
b+ 2a

+
c+ a√
c+ 2b

≥ 2
√
a+ b+ c

Proof. A common strategy used when solving problems that include square
roots in the denominator is to square the expression on the left hand side
then multiply by what’s inside the square root times the numerator and apply
Hölder’s Inequality like so(∑

cyc

a+ b√
a+ 2c

)2(∑
cyc

(a+ b)(a+ 2c)

)
≥ 8(a+ b+ c)3

Next we note that,∑
cyc

(a+ b)(a+ 2c) = (a+ b+ c)2 + 3(ab+ bc+ ac)

Hence, it is sufficient to prove that

8(a+ b+ c)3

(a+ b+ c)2 + 3(ab+ bc+ ac)
≥ (2
√
a+ b+ c)2

The rest of the proof is left as an exercise to the reader.

2.1.1 Practice Problems

1. Let a, b and c be positive real numbers. Prove that

(a)
a2

b
+
b2

c
+
c2

a
≥ (a+ b+ c)3

3(ab+ bc+ ac)

(b)

1

a
+

1

b
+

1

c
≥
√

27

ab+ bc+ ac
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(c)
a2

a+ b
+

b2

b+ c
+

c2

c+ a
≥ a+ b+ c

2

(d)

a2 + b2 + c2

a+ b+ c
≥
√
abc(a+ b+ c)

ab+ bc+ ac

(e)
a3 + b3 + c3 ≤ 3 =⇒ a+ b+ c ≤ 3

2. Let a, b and c be positive real numbers such that a + b + c = 1. Prove
that

(a)
3
√

99 ≥ 3
√

1 + 8a+
3
√

1 + 8b+ 3
√

1 + 8c

(b) For a positive integer n:

n
√
ab+ bc+ ac ≥ a

n

√
b+ c

2
+ b n

√
a+ c

2
+ c

n

√
a+ b

2

3. Let a1, a2, · · · , an be positive real numbers. Prove that

(1 + a1)(1 + a2) · · · (1 + an) ≥ (1 + n
√
a1a2 · · · an)n

4. Let a, b, c, x, y and z be positive real numbers. Prove that

a3

x
+
b3

y
+
c3

z
≥ (a+ b+ c)3

3(x+ y + z)

5. Let a, b and c be positive real numbers such that a + b + c = 1. Prove
that

1

a(3b+ 1)
+

1

b(3c+ 1)
+

1

c(3a+ 1)
≥ 9

2

6. Let a and b be positive real numbers such that a2 + b2 = 1. Prove that(
1

a
+

1

b

)(
b

a2 + 1
+

a

b2 + 1

)
≥ 8

3
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7. Let a, b and c be positive real numbers. Prove that

a+
√
ab+ 3

√
abc

3
≤ 3

√
a ·
(
a+ b

2

)
·
(
a+ b+ c

3

)

8. (Vasile Cirtoaje) Let a, b and c be positive real numbers. Prove that

a√
a+ 2b

+
b√

b+ 2c
+

c√
c+ 2a

≥
√
a+ b+ c

9. (Samin Riasat) Let a, b, c,m, n be positive real numbers. Prove that

a2

b(ma+ nb)
+

b2

c(mb+ nc)
+

c2

a(mc+ na)
≥ 3

m+ n

10. (Indonesia, 2010) Let a, b and c be non-negative real numbers and let
x, y and z be positive real numbers such that a+b+c = x+y+z. Prove
that

a3

x2
+
b3

y2
+
c3

z2
≥ a+ b+ c

11. (Greece, 2011) Let a, b, c be positive real numbers with sum 6. Find the
maximum value of

S =
3
√
a2 + 2bc+

3
√
b2 + 2ca+

3
√
c2 + 2ab

12. (Junior Balkan Math Olympiad, 2011) Let a, b, c be positive real numbers
such that abc = 1. Prove that∏
cyc

(a5 + a4 + a3 + a2 + a+ 1) ≥ 8(a2 + a+ 1)(b2 + b+ 1)(c2 + c+ 1)

13. (USAMO, 2004) For positive real numbers a, b and c. Prove that

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a+ b+ c)3
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14. (Austria, 2005) Let a, b, c and d be positive real numbers. Prove that

1

a3
+

1

b3
+

1

c3
+

1

d3
≥ a+ b+ c+ d

abcd

15. (Moldova TST, 2002) Positive numbers α, β, x1, x2, · · · , xn satisfy x1 +
x2 + · · ·+ xn = 1 for all natural numbers n. Prove that

x31
αx1 + βx2

+
x32

αx2 + βx3
+ · · ·+ x3n

αxn + βx1
≥ 1

n(α + β)

16. (IMO Longlist, 1986) Let k be one of the integers 2, 3, 4 and let n =
2k − 1. Prove the inequality

1 + bk + b2k + · · ·+ bnk ≥ (1 + bn)k

for all real b ≥ 0.

17. (IMO Shortlist, 1998) Let x, y and z be positive real numbers such that
xyz = 1. Prove that

x3

(1 + y)(1 + z)
+

y3

(1 + x)(1 + z)
+

z3

(1 + x)(1 + y)
≥ 3

4

18. (IMO, 2001) Prove that for all positive real numbers a, b, c,

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1
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2.1.2 Solutions

1. Let a, b and c be positive real numbers. Prove that

(a)
a2

b
+
b2

c
+
c2

a
≥ (a+ b+ c)3

3(ab+ bc+ ac)

Proof. By Hölder’s Inequality, we have that

(1 + 1 + 1)(ab+ bc+ ac)

(
a2

b
+
b2

c
+
c2

a

)
≥ (a+ b+ c)3

and the result follows.

(b)

1

a
+

1

b
+

1

c
≥
√

27

ab+ bc+ ac

Proof. By Hölder’s Inequality, we have that

(ab+ bc+ ac)

(
1

a
+

1

b
+

1

c

)(
1

b
+

1

c
+

1

a

)
≥ 27

Moreover, this inequality is equivalent with

(ab+ bc+ ac)

(
1

a
+

1

b
+

1

c

)2

≥ 27(
1

a
+

1

b
+

1

c

)2

≥ 27

ab+ bc+ ac

1

a
+

1

b
+

1

c
≥

√
27

ab+ bc+ ac

which is what we wanted to prove, so we are done!

(c)
a2

a+ b
+

b2

b+ c
+

c2

c+ a
≥ a+ b+ c

2
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Proof. By Hölder’s Inequality, we have that(∑
cyc

a+ b

)(
a2

a+ b
+

b2

b+ c
+

c2

c+ a

)
≥ (a+ b+ c)2

from where it follows that

a2

a+ b
+

b2

b+ c
+

c2

c+ a
≥ a+ b+ c

2

(d)

a2 + b2 + c2

a+ b+ c
≥
√
abc(a+ b+ c)

ab+ bc+ ac

Proof. Rearrange the inequality to its equivalent form

(ab+ bc+ ac)(a2 + b2 + c2)2 ≥ abc(a+ b+ c)3

divide both sides by abc(
1

a
+

1

b
+

1

c

)
(a2 + b2 + c2)2 ≥ (a+ b+ c)3

and the result follows directly from Hölder’s Inequality.

(e)
a3 + b3 + c3 ≤ 3 =⇒ a+ b+ c ≤ 3

Proof. Note that, by Hölder’s Inequality, we have

27 ≥ (1 + 1 + 1)(1 + 1 + 1)(a3 + b3 + c3) ≥ (a+ b+ c)3

from where it’s clear that

3 ≥ a+ b+ c

which is what we wanted to prove, so we’re done!
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2. Let a, b and c be positive real numbers such that a + b + c = 1. Prove
that

(a)
3
√

99 ≥ 3
√

1 + 8a+
3
√

1 + 8b+ 3
√

1 + 8c

Proof. Note that

99 = (1 + 1 + 1)(1 + 1 + 1)((1 + 8a) + (1 + 8b) + (1 + 8c))

and the result is evident.

(b) For a positive integer n:

n
√
ab+ bc+ ac ≥ a

n

√
b+ c

2
+ b n

√
a+ c

2
+ c

n

√
a+ b

2

Proof. Multiply both sides by n
√

2 so that our inequality is equiva-
lent to

n
√

2ab+ 2bc+ ac ≥ a
n
√
b+ c+ b n

√
a+ c+ c

n
√
a+ b

Then note that

2ab+ 2bc+ 2ac = (a(b+ c) + b(a+ c) + c(a+ b))(a+ b+ c)n−1

and the result is evident!

3. Let a1, a2, · · · , an be positive real numbers. Prove that

(1 + a1)(1 + a2) · · · (1 + an) ≥ (1 + n
√
a1a2 · · · an)n

Proof. It follows directly from Hölder’s Inequality.

4. Let a, b, c, x, y and z be positive real numbers. Prove that

a3

x
+
b3

y
+
c3

z
≥ (a+ b+ c)3

3(x+ y + z)
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Proof. Multiply both sides by 3(x+ y+ z) and the result is evident!

5. Let a, b and c be positive real numbers such that a + b + c = 1. Prove
that

1

a(3b+ 1)
+

1

b(3c+ 1)
+

1

c(3a+ 1)
≥ 9

2

Proof. By Hölder’s Inequality, we have(∑
cyc

a

)(∑
cyc

3b+ 1

)(
1

a(3b+ 1)
+

1

b(3c+ 1)
+

1

c(3a+ 1)

)
≥ 33

Thus, we have

1

a(3b+ 1)
+

1

b(3c+ 1)
+

1

c(3a+ 1)
≥ 27(∑

cyc a
)(∑

cyc 3b+ 1
)

but since

(a+ b+ c)((3b+ 1) + (3c+ 1) + (3a+ 1)) = (1)(6)

our inequality is equivalent to

1

a(3b+ 1)
+

1

b(3c+ 1)
+

1

c(3a+ 1)
≥ 9

2

which is what we wanted to prove, so we are done!

6. Let a and b be positive real numbers such that a2 + b2 = 1. Prove that(
1

a
+

1

b

)(
b

a2 + 1
+

a

b2 + 1

)
≥ 8

3

Proof. We start by multiplying both sides by 3

3

(
1

a
+

1

b

)(
b

a2 + 1
+

a

b2 + 1

)
≥ 8
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Then note that 3 = a2 + b2 + 1 + 1 and that the inequality is equivalent
to

([a2 + 1] + [b2 + 1])

(
1

b
+

1

a

)(
b

a2 + 1
+

a

b2 + 1

)
≥ (1 + 1)3 = 8

which is what we wanted to prove, so we’re done!

7. Let a, b and c be positive real numbers. Prove that

a+
√
ab+ 3

√
abc

3
≤ 3

√
a ·
(
a+ b

2

)
·
(
a+ b+ c

3

)

Proof. This problem is all about being clever! Multiply both sides by 3
and the inequality is equivalent with

a+
√
ab+

3
√
abc ≤ 3

√
(a+ a+ a)

(
a+

a+ b

2
+ b

)
(a+ b+ c)

Then note that, by Hölder’s Inequality, we have

3

√√√√(a+ a+ a)

(
a+

a+ b

2
+ b

)(∑
cyc

a

)
≥ a+

3

√
ab(a+ b)

2
+

3
√
abc

So it remains to prove that

3

√
ab

(
a+ b

2

)
≥
√
ab

which is equivalent to
a+ b

2
≥
√
ab

and since this last inequality follows from the AM-GM inequality, we are
done!
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8. (Vasile Cirtoaje) Let a, b and c be positive real numbers. Prove that

a√
a+ 2b

+
b√

b+ 2c
+

c√
c+ 2a

≥
√
a+ b+ c

Proof. As we have done before, we square the left hand side and multiply
by the corresponding terms. So that, by Hölder’s Inequality, we have(∑

cyc

a√
a+ 2b

)2(∑
cyc

a(a+ 2b)

)
≥ (a+ b+ c)3

Thus, it is sufficient to prove that

(a+ b+ c)3∑
cyc a(a+ 2b)

≥ a+ b+ c

which is clear since we have equality due to the fact that∑
cyc

a(a+ 2b) = (a+ b+ c)2

9. (Samin Riasat) Let a, b, c,m, n be positive real numbers. Prove that

a2

b(ma+ nb)
+

b2

c(mb+ nc)
+

c2

a(mc+ na)
≥ 3

m+ n

Proof. Note that ∑
cyc

a2

b(ma+ nb)
=
∑
cyc

a3

ab(ma+ nb)

and, by Hölder’s Inequality,(∑
cyc

ab

)(∑
cyc

ma+ nb

)(∑
cyc

a3

ab(ma+ nb)

)
≥ (a+ b+ c)3
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then, since ∑
cyc

ab = ab+ bc+ ac

and ∑
cyc

ma+ nb = (m+ n)(a+ b+ c)

the inequality is equivalent to∑
cyc

a3

ab(ma+ nb)
≥ (a+ b+ c)3

(m+ n)(a+ b+ c)(ab+ bc+ ac)

(a+ b+ c)3

(m+ n)(a+ b+ c)(ab+ bc+ ac)
=

(a+ b+ c)2

(m+ n)(ab+ bc+ ac)

(a+ b+ c)2

(m+ n)(ab+ bc+ ac)
≥ 3

m+ n

In which we used the well-known inequality (a+ b+ c)2 ≥ 3(ab+ bc+ac)
(which is equivalent to (a− b)2 +(b− c)2 +(c−a)2 ≥ 0) thus our original
inequality holds.

10. (Indonesia, 2010) Let a, b and c be non-negative real numbers and let
x, y and z be positive real numbers such that a+b+c = x+y+z. Prove
that

a3

x2
+
b3

y2
+
c3

z2
≥ a+ b+ c

Proof. By Hölder’s Inequality it follows that

(x+ y + z)(x+ y + z)

(
a3

x2
+
b3

y2
+
c3

z2

)
≥ (a+ b+ c)3

Thus, we have that

a3

x2
+
b3

y2
+
c3

z2
≥ (a+ b+ c)3

(x+ y + z)2
= a+ b+ c

since a+ b+ c = x+ y + z and we’re done!
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11. (Greece, 2011) Let a, b, c be positive real numbers with sum 6. Find the
maximum value of

S =
3
√
a2 + 2bc+

3
√
b2 + 2ca+

3
√
c2 + 2ab

Proof. By Hölder’s Inequality it follows that

(3)(3)

(∑
cyc

a2 + 2bc

)
≥

(∑
cyc

3
√
a2 + 2bc

)3

= S3

Furthermore,

(3)(3)((a2 + 2bc) + (b2 + 2ca) + (c2 + 2ab)) = (3)(3)(a+ b+ c)2 = 32 · 62

so we have that
32 · 62 ≥ S3

or
3

3
√

12 =
3
√

32 · 62 ≥ S

so the maximum is 3
3
√

12 and we have equality when a,b and c are equal
which, with our condition, gives a = b = c = 2.

12. (Junior Balkan Math Olympiad, 2011) Let a, b, c be positive real numbers
such that abc = 1. Prove that∏
cyc

(a5 + a4 + a3 + a2 + a+ 1) ≥ 8(a2 + a+ 1)(b2 + b+ 1)(c2 + c+ 1)

Proof. Let’s start by noting that

a5 + a4 + a3 + a2 + a+ 1 = (a3 + 1)(a2 + a+ 1)

thus the problem is equivalent to proving that

(a3 + 1)(b3 + 1)(c3 + 1) ≥ 8

which follows from Hölder’s Inequality as we have

(a3 + 1)(b3 + 1)(c3 + 1) ≥ (abc+ 1)3 = (1 + 1)3 = 8
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13. (USAMO, 2004) For positive real numbers a, b and c. Prove that

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a+ b+ c)3

Proof. We notice that this inequality seems rather similar. In the first
example we proved that

(a3 + 2)(b3 + 2)(c3 + 2) ≥ (a+ b+ c)3

so it suffices to prove that

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a3 + 2)(b3 + 2)(c3 + 2)

Furthermore, if we can show that

x5 − x2 + 3 ≥ x3 + 2

then we’re done. Luckily for us, this is true! Since

x5 − x2 + 3 ≥ x3 + 2⇐⇒ (x3 − 1)(x2 − 1) ≥ 0

and so we are done.

14. (Austria, 2005) Let a, b, c and d be positive real numbers. Prove that

1

a3
+

1

b3
+

1

c3
+

1

d3
≥ a+ b+ c+ d

abcd

Proof. Let w = 1
a
, x = 1

b
, y = 1

c
and z = 1

d
so that our inequality is

equivalent with

w3 + x3 + y3 + z3 ≥ xyz + wyz + wxz + wxy

Then note that, by Hölder’s Inequality,(∑
cyc

x3

)(∑
cyc

y3

)(∑
cyc

z3

)
≥

(∑
cyc

xyz

)3

but we also have

(w3 + x3 + y3 + z3)3 =

(∑
cyc

x3

)(∑
cyc

y3

)(∑
cyc

z3

)
and the result follows immediately.
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15. (Moldova TST, 2002) Positive numbers α, β, x1, x2, · · · , xn satisfy x1 +
x2 + · · ·+ xn = 1 for all natural numbers n. Prove that

x31
αx1 + βx2

+
x32

αx2 + βx3
+ · · ·+ x3n

αxn + βx1
≥ 1

n(α + β)

Proof. We can rewrite the inequality like so

∑
cyc

x31
αx1 + βx2

≥ 1

n(α + β)

Then, by Hölder’s Inequality, we have(
n∑
i=1

1

)(∑
cyc

(αx1 + βx2)

)(∑
cyc

x31
αx1 + βx2

)
≥

(
n∑
k=1

xk

)3

.

Then, noting that

n∑
i=1

1 = n∑
cyc

(αx1 + βx2) = (α + β)(x1 + x2 + · · ·+ xn) = α + β

(
n∑
k=1

xk

)3

= (1)3 = 1

we have that the inequality is equivalent to

(n)(α + β)
∑
cyc

x31
αx1 + βx2

≥ 1

x31
αx1 + βx2

+
x32

αx2 + βx3
+ · · ·+ x3n

αxn + βx1
≥ 1

n(α + β)

which is what we wanted to prove.
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16. (IMO Longlist, 1986) Let k be one of the integers 2, 3, 4 and let n =
2k − 1. Prove the inequality

1 + bk + b2k + · · ·+ bnk ≥ (1 + bn)k

for all real b ≥ 0.

Proof. Note that

1 + bk + b2k + · · ·+ bnk = (1 + bk)(1 + b2k)(1 + b4k) · · · (1 + b2
k−1k)

Then, by Hölder’s Inequality, we have

(1 + bk)(1 + b2k)(1 + b4k) · · · (1 + b2
k−1k) ≥ (1 + b2

k−1)k = (1 + bn)k

and we’re done! Note that this works for any k ∈ N.

17. (IMO Shortlist, 1998) Let x, y and z be positive real numbers such that
xyz = 1. Prove that

x3

(1 + y)(1 + z)
+

y3

(1 + z)(1 + x)
+

z3

(1 + x)(1 + y)
≥ 3

4

Proof. By Hölder’s Inequality, we know that(∑
cyc

(1 + y)

)(∑
cyc

(1 + z)

)(∑
cyc

x3

(1 + y)(1 + z)

)
≥ (x+ y + z)3

Thus, it is sufficient to Prove that

(x+ y + z)3

(3 + x+ y + z)2
≥ 3

4

or
(2(x+ y + z))2(x+ y + z) ≥ 3(3 + x+ y + z)2

which follows from the fact that

x+ y + z ≥ 3 3
√
xyz = 3

and
2(x+ y + z) ≥ 3 + (x+ y + z)

and so we are done!
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18. (IMO, 2001) Prove that for all positive real numbers a, b, c,

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1

Proof. By Hölder’s Inequality, we know that(∑
cyc

a√
a2 + 8bc

)2(∑
cyc

a(a2 + 8bc)

)
≥ (a+ b+ c)3

so it suffices to show that

(a+ b+ c)3 ≥ a3 + b3 + c3 + 24abc

or its equivalent form

a(b− c)2 + b(c− a)2 + c(a− b)2 ≥ 0

which obviously holds true, thus our original inequality also holds true.
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2.2 Induction

When we work with induction we always check if the base case (first case)
works, assume that the statement is true for some n and then prove for n+ 1.
The reasoning for why this works to prove all cases should be intuitive (consider
each case as if it were part of a long line of dominoes where the previous domino
hits the one immediately after).

We’ll begin this section with an example from Romania’s National Math
Olympiad in 2008. We should note that this inequality hints us to use induc-
tion as the terms of the previous cases still remain in the later cases. This
allows us to apply the inequalities of the lower cases to prove the larger ones.

Example 2.2.1: (Romania, 2008) Prove that

1

2
+

1

3
+ · · ·+ 1

22n
> n

for all positive integers n.

Proof. Let’s first start by checking if n = 1 works

1

2
+

1

3
+

1

4
>

1

2
+

1

4
+

1

4
= 1

and so it does. Now let us assume that the statement is true for some n

1

2
+

1

3
+ · · ·+ 1

22n
> n

This tells us that

1

2
+ · · ·+ 1

22n
+

1

22n + 1
+ · · ·+ 1

22(n+1)
> n+

1

22n + 1
+ · · ·+ 1

22(n+1)

Furthermore, we know that

22n∑
k=1

1

22n + k
=

1

22n + 1
+

1

22n + 2
+ · · ·+ 1

22n+1
>

22n

22n+1
=

1

2
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since
1

22n + k
>

1

22n+1
for 1 ≤ k ≤ 22n − 1

similarly

22n+1∑
k=1

1

22n+1 + k
=

1

22n+1 + 1
+

1

22n+1 + 2
+ · · ·+ 1

22n+2
>

22n+1

22n+2
=

1

2

joining these two inequalities we get(
22n∑
k=1

1

22n + k

)
+

(
22n+1∑
k=1

1

22n+1 + k

)
>

1

2
+

1

2
= 1

returning to

1

2
+ · · ·+ 1

22n
+

1

22n + 1
+ · · ·+ 1

22(n+1)
> n+

1

22n + 1
+ · · ·+ 1

22(n+1)

we notice that

1

22n + 1
+ · · ·+ 1

22(n+1)
=

(
22n∑
k=1

1

22n + k

)
+

(
22n+1∑
k=1

1

22n+1 + k

)

and thus

1

2
+ · · ·+ 1

22n
+

1

22n + 1
+ · · ·+ 1

22(n+1)
> n+

1

22n + 1
+ · · ·+ 1

22(n+1)
> n+ 1.

This in turn proves the n+ 1 case for our inequality and so we’re done.

The next example is from the Ibero American Math Olympiad that was
held in Costa Rica in September, 2011.

Example 2.2.2: (Ibero, 2011) Let x1, · · · , xn be positive real numbers. Show
that there exist a1, · · · , an ∈ {−1, 1} such that:

a1x
2
1 + a2x

2 + · · ·+ anx
2
n ≥ (a1x1 + a2x2 + · · ·+ anxn)2
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Proof. Let’s start by noting that we can assume that x1 ≥ x2 ≥ · · · ≥ xn since
the coefficients (i.e. the ai’s) are arbitrary. Next, we note that the following
inequalities hold

a2 − b2 ≥ (a− b)2 when a ≥ b

and
a2 − b2 + c2 ≥ (a− b+ c)2 when a ≥ b ≥ c

since it’s equivalent with
(a− b)(b− c) ≥ 0.

From here we can conjecture that ak = (−1)k+1. Now we’ll prove (by In-
duction) the inequality for n = 2k − 1, k ∈ N and ak = (−1)k+1. For
k = 1 =⇒ n = 1 it clearly holds. Let’s assume it’s true for some k.

x21 − x22 + · · ·+ x22k−1 ≥ (x1 − x2 + · · ·+ x2k−1)
2

and so we need to prove

x21 − x22 + · · ·+ x22k−1 − x22k + x22k+1 ≥ (x1 − x2 + · · ·+ x2k+1)
2

using our hypothesis we only need to prove that

(x1 − x2 + · · ·+ x2k−1)
2 − x22k + x22k+1 ≥ (x1 − x2 + · · ·+ x2k+1)

2

If we let a = x1 − x2 + · · · + x2k−1, b = x2k and c = x2k+1 then we can easily
note that a ≥ b ≥ c, thus

a2 − b2 + c2 ≥ (a− b+ c)2

which is equivalent with

(x1 − x2 + · · ·+ x2k−1)
2 − x22k + x22k+1 ≥ (x1 − x2 + · · ·+ x2k+1)

2

and so we have proven the n odd case. To prove the n even case (i.e. n = 2k
for all k ∈ N.) we use the fact that n odd is already proven so

x21 − x22 + · · ·+ x22k−1 − x22k ≥ (x1 − x2 + · · ·+ x2k−1)
2 − x22k
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since x1 − x2 + · · ·+ x2k−1 ≥ x2k we have

(x1 − x2 + · · ·+ x2k−1)
2 − x22k ≥ (x1 − x2 + · · ·+ x2k−1 − x2k)2

or
x21 − x22 + · · ·+ x22k−1 − x22k ≥ (x1 − x2 + · · ·+ x2k−1 − x2k)2.

Thus, our conjecture that ak = (−1)k+1 would give us such numbers is true
and we’re done.

Sometimes this method of mathematical induction does not suffice and we
require a stronger argument. This stronger form of mathematical induction
requires that the we assume that the first n cases are true rather than just the
nth case. Note that this argument still holds intuitively.

Example 2.2.3: (APMO, 1999) The real numbers a1, a2, a3, ... satisfy ai+j ≤
ai + aj for all i, j. Prove that

a1 +
a2
2

+
a3
3

+ · · ·+ an
n
≥ an

Proof. (By strong induction)
The base case, n = 1, follows immediately

a1 ≥ a1.

Next, we may assume that for some n the inequality holds for all k ∈ N such
that 1 ≤ k ≤ n:

a1 ≥ a1

a1 +
a2
2
≥ a2

...

a1 +
a2
2

+ · · ·+ an
n
≥ an

Adding these inequalities together we get

na1 +
(n− 1)a2

2
+

(n− 2)a3
3

+ · · ·+ (1)an
n
≥ a1 + a2 + · · ·+ an.
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Then, by adding a1 + a2 + · · ·+ an to both sides, we have

(n+1)a1+
(n+ 1)a2

2
+· · ·+ (n+ 1)an

n
≥ (a1+an)+(a2+an−1)+· · ·+(an+a1).

From where it follows that

(n+ 1)
(
a1 +

a2
2

+ · · ·+ an
n

)
≥ nan+1

or its equivalent

a1 +
a2
2

+ · · ·+ an
n

+
an+1

n+ 1
≥ an+1.

Which concludes the induction.

2.2.1 Practice Problems

Try to solve the small cases of these problems to get a sense of how to do the
induction.

1. Let n ≥ 2 be a natural number. Prove the following inequality

3n > 3n+ 2

2. For n ≥ 4 a natural number, Prove that

2n < n!

3. Let a1 be a positive real number such that a1 <
1
2
. Given that an+1 =

2a3n + a2n for all n ≥ 1. Prove that

an <
1

2
∀n ∈ N

4. (Complex Triangle Inequality Generalization) Let x1, x2, · · · , xn be com-
plex numbers. Prove that

|x1|+ |x2|+ · · ·+ |xn| ≥ |x1 + x2 + · · ·+ xn|
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5. (Bernoulli’s Inequality) Prove that for all natural numbers n > 1 and
real numbers x > −1 we have

(1 + x)n ≥ 1 + nx

6. Let a1, a2, · · · , an and b1, b2, · · · , bn be two sequences of real numbers.
Prove that√

a21 + b21 + · · ·+
√
a2n + b2n ≥

√
(a1 + · · ·+ an)2 + (b1 + · · ·+ bn)2

7. Let an ≥ an−1 ≥ · · · ≥ a1 be positive real numbers and n ≥ 2 a natural
number. Prove that

a2n − a21 ≥ (an − an−1)2 + (an−1 − an−2)2 + · · ·+ (a2 − a1)2

8. Let n be a natural number. Prove that

1 +
1

22
+

1

32
+ · · ·+ 1

n2
< 2

9. (Romania District Olympiad, 2001) Consider a positive odd integer k
and let n1 < n2 < · · · < nk be k positive odd integers. Prove that

n2
1 − n2

2 + n2
3 − n2

4 + · · ·+ n2
k ≥ 2k2 − 1
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2.2.2 Solutions

1. Let n ≥ 2 be a natural number. Prove the following inequality

3n > 3n+ 2

Proof. For n = 2 the inequality clearly holds. We assume that the
inequality holds for n and prove for n+ 1.

3n+1 = 3 · 3n > 3(3n+ 2) > 3(n+ 1) + 2

Thus, we have that

3n > 3n+ 2 =⇒ 3n+1 > 3(n+ 1) + 2

and so we are done.

2. For n ≥ 4 a natural number, Prove that

2n < n!

Proof. For n = 4 we see that it holds true. Next we assume it holds for
n and note that n+ 1 > 2 for all n ≥ 4. So we have

(n+ 1)! = (n+ 1) · n! > (n+ 1) · 2n > (2) · 2n > 2n+1

and so

n! > 2n =⇒ (n+ 1)! > 2n+1

which is what we wanted to prove so we’re done.

3. Let a1 be a positive real number such that a1 <
1
2
. Given that an+1 =

2a3n + a2n for all n ≥ 1. Prove that

an <
1

2
∀n ∈ N
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Proof. For n = 2 we have

a2 = 2a31 + a21 < 2

(
1

2

)3

+

(
1

2

)2

=
1

2

thus it holds for n = 2. Furthermore, if we assume that an <
1
2

for some
n then

an+1 = 2a3n + a2n < 2

(
1

2

)3

+

(
1

2

)2

=
1

2

which concludes the induction process.

4. (Complex Triangle Inequality Generalization) Let x1, x2, · · · , xn be com-
plex numbers. Prove that

|x1|+ |x2|+ · · ·+ |xn| ≥ |x1 + x2 + · · ·+ xn|

Proof. For n = 2 we note that [in the complex plane] |x1 + x2| is the
length of a diagonal in a parallelogram with sides |x1| and |x2| thus by
the triangle inequality we have

|x1|+ |x2| ≥ |x1 + x2|

Furthermore, if we assume that

|x1|+ |x2|+ · · ·+ |xn| ≥ |x1 + x2 + · · ·+ xn|

is true then

|x1|+ |x2|+ · · ·+ |xn|+ |xn+1| ≥ |x1 + x2 + · · ·+ xn|+ |xn+1|

but from the n = 2 case we have

|x1 + x2 + · · ·+ xn|+ |xn+1| ≥ |x1 + x2 + · · ·+ xn + xn+1|

which proves the n+ 1 case so we’re done.
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5. (Bernoulli’s Inequality) Prove that for all natural numbers n > 1 and
real numbers x > −1 we have

(1 + x)n ≥ 1 + nx

Proof. For n = 2 we have

(1 + x)2 = 1 + 2x+ x2 ≥ 1 + 2x

because x2 ≥ 0. Next we assume that it’s true for some n

(1 + x)n ≥ 1 + nx

then for n+ 1 we have

(1 + x)n+1 = (1 + x)(1 + x)n ≥ (1 + x)(1 + nx)

and by expanding

(1 + x)(1 + nx) = 1 + (n+ 1)x+ nx2 ≥ 1 + (n+ 1)x

which proves the n+ 1 case and so the problem solved.

6. Let a1, a2, · · · , an and b1, b2, · · · , bn be two sequences of real numbers.
Prove that√

a21 + b21 + · · ·+
√
a2n + b2n ≥

√
(a1 + · · ·+ an)2 + (b1 + · · ·+ bn)2

Proof. Let the complex numbers xk = ak + i · bk for all 1 ≤ k ≤ n. Then
note that the inequality is equivalent to

|x1|+ |x2|+ · · ·+ |xn| ≥ |x1 + x2 + · · ·+ xn|

which was solved as problem 4.

7. Let an ≥ an−1 ≥ · · · ≥ a1 be positive real numbers and n ≥ 2 a natural
number. Prove that

a2n − a21 ≥ (an − an−1)2 + (an−1 − an−2)2 + · · ·+ (a2 − a1)2
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Proof. For n = 2 we have

a22 − a21 ≥ (a2 − a1)2 ⇐⇒ a2 ≥ a1

and so it holds. We assume the inequality holds for some n such that
an ≥ an−1 ≥ · · · ≥ a1

a2n − a21 ≥ (an − an−1)2 + (an−1 − an−2)2 + · · ·+ (a2 − a1)2

then for some an+1 such that an+1 ≥ an we have

a2n+1 − a2n ≥ (an+1 − an)2

by the n = 2 case. Adding this inequality to the n case we have

(a2n+1 − a2n) + (a2n − a21) ≥ (an+1 − an)2 + (an − an−1)2 + · · ·+ (a2 − a1)2

which is equivalent to

a2n+1 − a21 ≥ (an+1 − an)2 + (an − an−1)2 + · · ·+ (a2 − a1)2

thus, since this is the n+1 case, we have that the inequality then follows
for all n ≥ 2.

8. Let n be a natural number. Prove that

1 +
1

22
+

1

32
+ · · ·+ 1

n2
< 2

Proof. We will prove a stronger inequality:

1 +
1

22
+

1

32
+ · · ·+ 1

n2
≤ 2− 1

n

For n = 1 we have
1 ≤ 2− 1 = 1

and so the base case holds. Then, for some n we assume that

1 +
1

22
+

1

32
+ · · ·+ 1

n2
≤ 2− 1

n

74



A Brief Introduction to Inequalities 2.2

adding 1
(n+1)2

to both sides we get

1 +
1

22
+ · · ·+ 1

(n+ 1)2
≤ 2− 1

n
+

1

(n+ 1)2

and so it is sufficient to prove that

2− 1

n
+

1

(n+ 1)2
≤ 2− 1

n+ 1

or

1

(n+ 1)2
≤ 1

n
− 1

n+ 1
1

(n+ 1)2
≤ 1

n(n+ 1)
n ≤ n+ 1

which of course holds for all natural numbers n and so the problem is
solved since 2− 1

n
< 2. Alternatively, we could have noted that

1 +
1

22
+ · · ·+ 1

n2
<
∞∑
k=1

1

k2
=
π2

6
< 2

The identity used,
∑∞

k=1

1

k2
=
π2

6
, is from the Basel Problem.

9. (Romania District Olympiad, 2001) Consider a positive odd integer k
and let n1 < n2 < · · · < nk be k positive odd integers. Prove that

n2
1 − n2

2 + n2
3 − n2

4 + · · ·+ n2
k ≥ 2k2 − 1

Proof. First we should note that nq ≥ 2q − 1 for all 1 ≤ q ≤ k since for
all 1 ≤ p ≤ q − 1 we have that np are odd numbers smaller than nq and
so nq should be larger than the (q − 1)th odd number. For k = 1 we
have

n2
1 ≥ 2 · 12 − 1 = 1
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and so the base case holds. We assume the inequality holds for some k

n2
1 − n2

2 + n2
3 − n2

4 + · · ·+ n2
k ≥ 2k2 − 1

and note that the next case is k+ 2 (as it needs to remain odd). If nk+2

and nk+1 are odd integers such that nk+2 > nk+1 > nk > · · · > n1 then
we need to prove that

n2
1 − n2

2 + n2
3 − n2

4 + · · ·+ n2
k+2 ≥ 2(k + 2)2 − 1.

Using the k case, we have that it is sufficient to prove that

n2
k+2 − n2

k+1 ≥ (2(k + 2)2 − 1)− (2k2 − 1)

or

n2
k+2 − n2

k+1 ≥ 8k + 8

(nk+2 + nk+1)(nk+2 − nk+1) ≥ 8k + 8

Note that the left hand side expression is minimized when both nk+2 +
nk+1 and nk+2−nk+1 are minimized. The smallest value for nk+2−nk+1

is 2 and it happens when nk+2 and nk+1 are consecutive (odd integers).
Furthermore, the smallest value for nk+2 +nk+1 happens when nk+2 and
nk+1 are minimized which happens when nk+2 = 2k + 3 and nk+1 =
2k+ 1. Since these values are consecutive we have that the expression is
minimized and so

n2
k+2 − n2

k+1 ≥ (2k + 3)2 − (2k + 1)2 = 8k + 8

which is what we wanted to prove, so we are done.
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2.3 Schur’s Inequality

Schur’s Inequality is special for its equality cases. When an inequality has
unusual cases for equality you might want to try using Schur’s Inequality.

Theorem 2.3.1 (Schur’s Inequality): Let a, b, c be nonnegative reals and r >
0. Then

ar(a− b)(a− c) + br(b− c)(b− a) + cr(c− a)(c− b) ≥ 0

with equality if and only if a = b = c or some two of a, b, c are equal and the
other is 0.

Proof. We can assume without loss of generality that a ≥ b ≥ c since the
inequality is symmetric. Now note that

ar(a− b)(a− c) + br(b− c)(b− a) = (a− b) (ar(a− c)− br(b− c))

then since a− b ≥ 0, ar ≥ br ≥ 0 and a− c ≥ b− c ≥ 0 it’s clear that

ar(a− b)(a− c) + br(b− c)(b− a) ≥ 0

Furthermore, we have that

cr(c− a)(c− b) ≥ 0

since cr ≥ 0 and (c − a)(c − b) = (a − c)(b − c) ≥ 0. By adding these two
inequalities together we get

ar(a− b)(a− c) + br(b− c)(b− a) + cr(c− a)(c− b) ≥ 0

We’ll start by proving an equivalent form of the r = 1 case.

Example 2.3.2: Let a, b and c be nonnegative real numbers. Prove that

a3 + b3 + c3 + 3abc ≥ a2(b+ c) + b2(a+ c) + c2(a+ b)
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Proof. Rewrite the inequality as

a(a2 + bc) + b(b2 + ac) + c(c2 + ab) ≥ a(ab+ ac) + b(ba+ bc) + c(ca+ cb)

then move the terms that are on the right to the left

a(a2 − ab− ac+ bc) + b(b2 − ab− bc+ ac) + c(c2 − ac− bc+ ab) ≥ 0

which is equivalent to

a(a− b)(a− c) + b(b− c)(b− a) + c(c− a)(c− b) ≥ 0

Since this is the r = 1 case of Shur’s Inequality we have the inequality is
proven.

Note that if you can simplify an inequality problem to any equivalent form
of Schur’s Inequality then you have just proved that inequality (assuming you
know how the inequality is equivalent).

Example 2.3.3: Let a, b and c be nonnegative real numbers. Prove that

abc ≥ (a+ b− c)(a+ c− b)(b+ c− a)

Proof. By expanding the expression, we have

abc ≥ a2(b+ c) + b2(a+ c) + c2(a+ b)− 2abc− (a3 + b3 + c3)

or
a3 + b3 + c3 + 3abc ≥ a2(b+ c) + b2(a+ c) + c2(a+ b)

Which we know is equivalent to Schur’s Inequality for r = 1 so we’re done.

Sometimes you’ll have to make several algebraic manipulations to check if
an inequality can be solved by Schur’s Inequality. This is the case with the
next example.

Example 2.3.4: (British Mathematical Olympiad, 1999) Nonnegative real
numbers p, q and r satisfy p+ q + r = 1. Prove that

7(pq + qr + rp) ≤ 2 + 9pqr
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Proof. We note that the left hand side has degree 2 while the right hand side
has a term of degree 0 and another of degree 3. We can homogenize this
inequality by using the condition given like so

7(pq + qr + rp)(p+ q + r) ≤ 2(p+ q + r)3 + 9pqr

Now all the terms have the same degree. Then we note the following identity

(p+ q + r)3 + 3pqr = p3 + q3 + r3 + 3(p+ q + r)(pq + qr + rp)

Thus, the given inequality is equivalent to

2(p3 + q3 + r3) + 3pqr ≥ (p+ q + r)(pq + qr + rp)

we subtract 3pqr from both sides and get

2(p3 + q3 + r3) ≥ p2(q + r) + q2(p+ r) + r2(p+ q)

which looks very similar to Schur’s Inequality by excercise 2.3.2. We know
that

p3 + q3 + r3 + 3pqr ≥ p2(q + r) + q2(p+ r) + r2(p+ q)

holds true. So it is sufficient to prove that

p3 + q3 + r3 ≥ 3pqr

But this follows from the AM-GM inequality, so we’re done.

2.3.1 Practice Problems

1. Let a, b and c be nonnegative real numbers. Prove that

(a2 + b2 + c2)(a+ b+ c) + 7abc ≥ 2(a+ b)(a+ c)(b+ c)

2. Let a, b and c be nonnegative real numbers such that a+b+c = 1. Prove
that

2(a3 + b3 + c3) + 3abc ≥ a2 + b2 + c2
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3. (IMO, 1964) Denote by a, b, c the lengths of the sides of a triangle. Prove
that

a2(b+ c− a) + b2(c+ a− b) + c2(a+ b− c) ≤ 3abc

4. Let a, b, c be positive real numbers such that abc = 1. Prove that

a3 + b3 + c3 ≥ (a− b)(b− c)(c− a)

2
+
a

c
+
b

a
+
c

b

5. (Canada MO, 1992) For x, y, z ≥ 0, establish the inequality

x(x− z)2 + y(y − z)2 ≥ (x− z)(y − z)(x+ y − z)

and determine when equality holds.

6. Let a, b and c be nonnegative real numbers such that a+b+c = 1. Prove
that

9abc+ 1 ≥ 4(ab+ bc+ ac)

7. (Austrian-Polish Mathematical Competition, 2001) If a, b, c are the sides
of a triangle, prove the inequality

2 <
a+ b

c
+
a+ c

b
+
b+ c

a
− a3 + b3 + c3

abc
≤ 3

8. (IMO, 1984) Let x, y, z be nonnegative real numbers with x+ y+ z = 1.
Show that

0 ≤ xy + yz + zx− 2xyz ≤ 7

27
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2.3.2 Solutions

1. Let a, b and c be nonnegative real numbers. Prove that

(a2 + b2 + c2)(a+ b+ c) + 7abc ≥ 2(a+ b)(a+ c)(b+ c)

Proof. By expanding and simplifying we note that the inequality is
equivalent with

a3 + b3 + c3 + 3abc ≥ a2(b+ c) + b2(a+ c) + c2(a+ b)

which we know holds since it is equivalent to Schur’s Inequality for r =
1.

2. Let a, b and c be nonnegative real numbers such that a+b+c = 1. Prove
that

2(a3 + b3 + c3) + 3abc ≥ a2 + b2 + c2

Proof. Subtract a3 + b3 + c3 on both sides to get

a3 + b3 + c3 + 3abc ≥ a2 + b2 + c2 − (a3 + b3 + c3)

a3 + b3 + c3 + 3abc ≥ a2(1− a) + b2(1− b) + c2(1− c)
a3 + b3 + c3 + 3abc ≥ a2(b+ c) + b2(a+ c) + c2(a+ b)

which follows from Schur’s Inequality.

3. (IMO, 1964) Denote by a, b, c the lengths of the sides of a triangle. Prove
that

a2(b+ c− a) + b2(c+ a− b) + c2(a+ b− c) ≤ 3abc

Proof. After expanding and rearranging we note that this inequality is
equivalent to

a3 + b3 + c3 + 3abc ≥ a2(b+ c) + b2(a+ c) + c2(a+ b)
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which follows from Schur’s Inequality for r = 1. Alternatively, we could
note that the inequality is equivalent to

abc ≥ (a+ b− c)(a+ c− b)(b+ c− a)

which, after using Ravi Substitution1, is equivalent to

(y + z)(x+ z)(x+ y) ≥ 8xyz

but this last inequality follows from AM-GM so we’re done.

4. Let a, b, c be positive real numbers such that abc = 1. Prove that

a3 + b3 + c3 ≥ (a− b)(b− c)(c− a)

2
+
a

c
+
b

a
+
c

b

Proof. To begin, we use the condition to note that inequality is equiva-
lent to

a3 + b3 + c3 ≥ (a− b)(b− c)(c− a)

2
+ a2b+ b2c+ c2a

Next, we multiply by 2 on both sides. By expanding the expression
(a − b)(b − c)(c − a) and simplifying, we have that the inequality is
equivalent to

2(a3 + b3 + c3) ≥ a2(b+ c) + b2(a+ c) + (a+ b)2.

From Schur’s Inequality we have that

a3 + b3 + c3 + 3abc ≥ a2(b+ c) + b2(a+ c) + (a+ b)2.

So it suffices to show the following inequality

2(a3 + b3 + c3) ≥ a3 + b3 + c3 + 3abc

a3 + b3 + c3 ≥ 3abc.

Since this inequality follows from the AM-GM inequality, we’re done!

1Ravi Substitution: Is the process in which we express the side lengths of a triangle in
terms of the distances from its vertices to the two nearest tangency points of the incircle.
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5. (Canada MO, 1992) For x, y, z ≥ 0, establish the inequality

x(x− z)2 + y(y − z)2 ≥ (x− z)(y − z)(x+ y − z)

and determine when equality holds.

Proof. By expanding and simplifying we can rearrange the inequality so
that it represents Schur’s Inequality for r = 1. Therefore, the inequality
is proven and has equality cases when x = y = z or two of x, y and z are
equal and the last one is 0.

6. Let a, b and c be nonnegative real numbers such that a+b+c = 1. Prove
that

9abc+ 1 ≥ 4(ab+ bc+ ac)

Proof. First we note that this inequality has equality when a = b = c = 1
3

or one of a, b, c is 0 and the other two are 1
2
. This hints to us that we

should look for Schur’s Inequality. Then we, as done in a similar example
problem, plug in the given condition so that all terms have the same
degree.

9abc+ (a+ b+ c)3 ≥ 4(ab+ bc+ ac)(a+ b+ c)

And note that, after expansion and simplification, this is equivalent to
Schur’s Inequality for r = 1.

7. (Austrian-Polish Mathematical Competition, 2001) If a, b, c are the sides
of a triangle, prove the inequality

2 <
a+ b

c
+
a+ c

b
+
b+ c

a
− a3 + b3 + c3

abc
≤ 3

Proof. First we’ll prove the left hand side

2 <
a+ b

c
+
a+ c

b
+
b+ c

a
− a3 + b3 + c3

abc
2abc < ab(a+ b) + ac(a+ c) + bc(b+ c)− (a3 + b3 + c3)
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By subtracting 2abc to both sides and factorizing we get

0 < ab(a+ b) + ac(a+ c) + bc(b+ c)− (a3 + b3 + c3)− 2abc

0 < (a+ b− c)(a+ c− b)(b+ c− a)

which follows from the triangle inequality. To prove the right hand side
we multiply both sides by abc

ab(a+ b) + ac(a+ c) + bc(b+ c)− (a3 + b3 + c3) ≤ 3abc

or

ab(a+ b) + ac(a+ c) + bc(b+ c) ≤ a3 + b3 + c3 + 3abc

but

ab(a+ b) + ac(a+ c) + bc(b+ c) = a2(b+ c) + b2(a+ c) + c2(a+ b)

now we note that our inequality is equivalent to Schur’s Inequality for
r = 1 so we’re done.

8. (IMO, 1984) Let x, y, z be nonnegative real numbers with x+ y+ z = 1.
Show that

0 ≤ xy + yz + zx− 2xyz ≤ 7

27

Proof. We’ll start with the left hand side. Notice that for all real x, y, z
we have that

(x+ y + z)(xy + yz + zx)− 2xyz = xyz

So the left hand side is equivalent to proving that

xyz ≥ 0
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which follows from the conditions. For the right hand side we use the
condition to make all of the terms have the same degree.

xy + yz + zx− 2xyz ≤ 7

27

(x+ y + z)(xy + yz + zx)− 2xyz ≤ 7(x+ y + z)3

27

x2(y + z) + y2(x+ z) + z2(x+ y) + xyz ≤ 7(x+ y + z)3

27
27
(
x2(y + z) + y2(x+ z) + z2(x+ y) + xyz

)
≤ 7(x+ y + z)3

which simplifies to

6
(
x2(y + z) + y2(x+ z) + z2(x+ y)

)
≤ 7(x3 + y3 + z3) + 15xyz

Finally, we note that

7(x3 + y3 + z3) + 15xyz ≥ 6(x3 + y3 + z3 + 3xyz)

since it’s equivalent to

x3 + y3 + z3 ≥ 3xyz

which follows from the AM-GM inequality. So our original inequality is
equivalent with proving

x3 + y3 + z3 + 3xyz ≥ x2(y + z) + y2(x+ z) + z2(x+ y)

which is Schur’s Inequality for r = 1 so we’re done.
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Notation

N The set of positive integers
R The set of real numbers
R+ The set of positive real numbers
∀ For all
∈ In
|x| The absolute value of x∑
cyc

f(a1, · · · ) The sum of the function f applied cyclically∏
cyc

f(a1, · · · ) The product of the function f applied cyclically

max{a1, a2, · · · } The largest element in the set {a1, a2, · · · }
min{a1, a2, · · · } The smallest element in the set {a1, a2, · · · }
IMO International Math Olympiad
ISL International Math Olympiad Short-List
IBERO Ibero American Math Olympiad
CENTRO Central American and Caribbean Math Olympiad
APMO Asian Pacific Mathematics Olypmiad
USAMO United States of America Mathematical Olympiad
TST Team Selection Test
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